

Wärmestrahler

SPAREN SIE ENERGIE UND GELD

Wie die Sonne wärmen Wärmestrahler Personen und Objekte und steigern dadurch den Temperaturkomfort und senken die Wärmeverluste. Dadurch kann die Lufttemperatur, und somit die Kosten, verringert werden. Ein Wärmestrahler ermöglicht es Ihnen auch, nur eine ausgewählte Fläche zu heizen, ohne den gesamten Raum zu erwärmen.

SORGEN SIE FÜR KOMFORT

Da Wärmestrahler nicht direkt die Luft wärmen, schaffen sie ein sanftes und angenehmes Raumklima und eine gleichmäßige Temperatur ohne Luftbewegung. Wärmestrahler sind auch im Freien sehr leistungsstark und verlängern Abende und den Sommer. Die Temperatur kann perfekt in den verschiedenen Bereichen eines Raums oder einer Terrasse angepasst werden.

FINDEN SIE, WAS SIE BRAUCHEN

Ob Sie nach einer Vollheizung oder einer Lösung für einen bestimmten Punkt suchen, häufig sind Wärmestrahler die Antwort. Frico bietet ein breites Sortiment an Wärmestrahlern, elektrisch und wasserbeheizt, mit Einsatzbereichen von großen Werkshallen bis zu einer geringeren Einsatzdistanz, im Gebäude und im Freien.

Willkommen zum Katalog von Frico für Wärmestrahler-Heizungen und unseren 85 Jahren Erfahrung in energieeffizienter Heizung!

4 Wärmestrahler

- 5 Art der Heizung
- 6 Die Auswahl des richtigen Wärmestrahlers
- 8 Installationsbeispiele für Wärmestrahler

10 Büros, Geschäfte und öffentliche Einrichtungen

- 12 Thermoplus
- 16 Thermocassette
- 20 Elztrip EZ100

24 Industrie und große Gebäude

- 26 Elztrip EZ200
- 30 Elztrip EZ300
- 34 Infrarotstrahler IR
- 38 Infrarotstrahler IRCF
- 42 Aquaztrip Plan 6
- 44 Aquaztrip Flex 6
- 48 Aquaztrip Comfort 6

52 Außenbereiche

- 54 Infrarotstrahler CIR
- 58 Carbon-Infrarotstrahler IHC
- 62 Infrarotstrahler IH
- 66 Infrarotstrahler ELIR

70 Regler

- 71 Thermostats
- 74 Weitere Regler

76 Technisches Handbuch

- 78 Heizung Energie
- 79 Heizungssysteme
- 80 Energieeinsparungen
- 83 Was bedeutet Wärmestrahlung?
- 34 Leitfaden Wärmestrahler-Heizungen im Gebäude
- 86 Leitfaden Wärmestrahler-Heizungen im Freien
- 88 Leistungs- und Energieberechnung
- 93 Tabellen zur Dimensionierung

Gute Gründe, sich für Frico zu entscheiden

Mit über fünfundachtzig Jahren Erfahrung in der Entwicklung von Produkten für das abwechslungsreiche nordische Klima haben wir einen einzigartigen Wissensschatz zusammengetragen. Auf dieser Grundlage schaffen wir heute energieeffiziente Lösungen für ein angenehmes Raumklima.

Führend in Technologie und Design
Heute ist Frico der führende Anbieter von
Türluftschleiern, Wärmestrahlern und Heizlüftern in
Europa und unsere Produkte werden nach der guten
skandinavischen Tradition hergestellt. Als Marktführer
treiben wir die Entwicklung voran und bieten sowohl
elektrisch als auch wasserbeheizte Produkte sowie
Luftschleier ohne Heizfunktion an.

Heizungsexperten

Frico kennt sich mit Heizungen aus. Das Unternehmen wurde 1932 gegründet und 1967 stellten wir unseren ersten Wärmestrahler vor. Qualität ist schon immer eine bekannte Eigenschaft der Produkte von Frico gewesen, ebenso wie eine hervorragende technische Funktionsweise. Im Jahr 1956 fingen wir an, abschließende Tests in die Produktion aller unserer Produkte aufzunehmen, um zu gewährleisten, dass unsere hohen qualitativen Anforderungen erfüllt werden. Bei der Entwicklung neuer Produkte und der Optimierung bereits existierender führen wir regelmäßig umfangreiche Tests und Messungen durch. Wir teilen gerne unser Wissen und unsere Erfahrung und freuen uns immer, Ihnen bei der Wahl des richtigen Produkts zur Seite stehen zu können.

Klima-smart

Frico ist stolz, energieeffiziente Produkte für ein besseres Innenraumklima zu liefern. Bei unserer Produktentwicklung konzentrieren wir uns darauf, die größtmögliche Leistung bei niedrigstem Energieverbrauch zu erzielen - ohne Kompromisse bei unseren Kernwerten Vertrauen, Kompetenz und Design.

Dies bedeutet, dass unsere Produkte nicht nur für ein optimales Raumklima in Geschäftshäusern, Industriegebäuden, Büros und Sommerhäusern sorgen, sondern wegen ihrer hohen Energieeffizienz außerdem klima-smart sind.

Die Hauptverwaltung von Frico hat ihren Sitz außerhalb von Göteborg in Schweden. Das Unternehmen gehört zur Systemair-Gruppe. Frico ist heute durch Tochtergesellschaften und Vertriebspartnern in 70 Ländern weltweit vertreten. Aktuelle Informationen finden Sie auf unserer Homepage unter www.frico.se.

Wir fertigen in Produktionsstätten in Skinnskatteberg, Schweden sowie in ISO-zertifizierten Produktionsstätten in Europa. Unsere Warenlager befinden sich an strategisch günstigen Orten in ganz Europa. Vertrauen, Kompetenz und Design Mit Frico wählen Sie einen zuverlässigen und kompetenten Partner. Unsere Arbeit gründet auf unseren Kernwerten – Vertrauen, Kompetenz und Design – in allen Bereichen, angefangen bei der Produktentwicklung bis hin zum Kontakt mit Ihnen als unseren Kunden. Die meisten unserer Produkte führen wir auf Lager, wodurch sich für Sie die Lieferzeiten verkürzen, und dank unseres gut ausgebauten Netzwerks aus Fachhändlern können Sie Ihre Produkte stets instandhalten, warten lassen und auf Unterstützung zählen. Unser Know-how und unsere Erfahrung garantieren die beste Lösung zur Schaffung eines angenehmen Raumklimas. Außerdem bieten wir Produkte, die sich nahtlos an die jeweilige Umgebung anpassen oder aber als besondere Designelemente herausstechen.

Qualifizierte Unterstützung vor Ort Mit einem Netz von 100-prozentigen Tochtergesellschaften und unabhängigen Fachhändlern ist Frico weltweit in rund 70 Ländern vor Ort präsent. Unsere hoch qualifizierten Partner werden sorgfältig ausgewählt, um Ihnen zusammen mit uns die bestmögliche Unterstützung zu bieten. Um eine Frico-Tochtergesellschaft oder einen Fachhändler in Ihrer Nähe zu finden, besuchen Sie bitte www.frico.se.

Frico Academy

Die Frico Academy ist eine wichtige Plattform für die Pflege von Beziehungen und den Austausch von Anregungen und Wissen zwischen uns und unseren Partnern weltweit. Über die Frico Academy tauschen wir unser Wissen über Theorie und Technik aus und nutzen gemeinsam unser Produktwissen und unsere Erfahrungen bei Fertigung und Produktentwicklung.

Es ist einfach, sich für Frico zu entscheiden Wir erleichtern Ihnen den Alltag, indem wir Ihnen relevante Produktinformationen zusammen mit unserem Fachwissen in Sachen Beheizung bieten. Auf unserer Internetseite www.frico.se finden Sie stets aktuelle Informationen, können sich bei der Wahl des richtigen Produkts helfen lassen und unsere Referenzmaterialien durchstöbern, um sich inspirieren zu lassen, die Neuigkeiten lesen oder einen Blick in die Handbücher, Schaltpläne usw. werfen.

Die Ökodesign-Verordnung (EU) 2015/1188 über Einzelraumheizgeräte trifft nicht auf alle Anwendungsgebiete zu.

Die Verordnung findet Anwendung, wenn eine Installation dazu bestimmt ist, innerhalb eines Raumes ein für den Menschen angenehmes Temperaturniveau zu erreichen. Die Verordnung findet keine Anwendung auf Heizungsinstallationen technischer Natur, z. B. in Technik-/Wirtschaftsräumen, bei Produktionsprozessen, für Frostschutz usw. Die Verordnung findet ebenfalls keine Anwendung bei Installationen in Fahrzeugen, Offshoreanlagen und Außenbereichen.

Viele Frico-Produkte können sowohl als Einzelraumheizgerät (gemäß Definition nach (EU) 2015/1188) als auch für technische Heizprozesse eingesetzt werden. Der Monteur, der für die Installation verantwortlich ist, muss beurteilen, ob die Ökodesign-Verordnung anwendbar ist oder nicht.

Steuerungslösungen für Installationen, die nicht unter die Ökodesign-Verordnung fallen, sind in einer separaten Tabelle aufgelistet.

Wärmestrahler

Fricos Wärmestrahler heizen wie die Sonne. Der prächtigste Wärmestrahler ist die Sonne. Die Wärme, die diese Wärmequelle ausstrahlt, ist für alles Leben auf der Erde lebensnotwendig. Die Infrarotstrahlen der Sonne können ohne große Energieverluste enorme Distanzen zurücklegen. Treffen die Infrarotstrahlen auf eine Oberfläche, wird die Energie in Wärme umgewandelt. Die erwärmten Gegenstände geben die Wärme dann an die Umgebungsluft ab. Obwohl die Sonne so weit entfernt ist, erwärmt sie die Erdoberfläche, während der Bereich dazwischen kühl bleibt. Die Heizungsweise der Natur ist grandios! Die Wärmestrahler von Frico ahmen die Sonne nach – die angenehmste und ergiebigste Wärmequelle überhaupt.

Wärmestrahler bieten viele Vorteile:

Wirtschaftlichkeit

- Es werden Personen und Objekte gewärmt, die wiederum die Umgebungsluft erwärmen. Dadurch kann die Temperatur verringert werden, während der Komfort erhalten bleibt. Eine Verringerung der Lufttemperatur um 1 °C resultiert in Energieeinsparungen von ca. 5 %
- Sie heizen sofort und sind deshalb viel schneller als traditionelle Heizsysteme. Dies ist ganz besonders im Freien und in Gebäuden nützlich, die nur gelegentlich verwendet werden, beispielsweise Sport-Center und Ferienhäuser
- Die Wärme ist auf Bodenhöhe, nicht an der Decke
- Möglichkeit, nur einen begrenzten Bereich einer großen offenen Fläche zu heizen
- Dank der schnellen Aufheizzeit können mit den richtigen Regelgeräten geringere Nachttemperaturen eingestellt werden

Sicherheit

- Durch Montage der Wärmestrahler in der richtigen Höhe wird das Risiko, in Kontakt mit dem Strahler zu kommen, nahezu ausgeschlossen. Außerdem wird der Heizstrahler dadurch vor Beschädigungen geschützt.
- Einige Wärmestrahler eignen sich ideal für Räumlichkeiten, in denen ein hohes Feuer- oder Explosionsrisiko besteht (siehe Wärmestrahler Aquaztrip).

Einfachheit

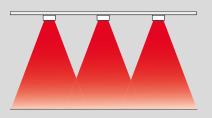
- Einfache und flexible Installation.
- Nur minimale Wartung erforderlich.
- Benutzerfreundlich.

Komfort

- Durch das Strahlungsprinzip wird die Luft nicht direkt erwärmt. Dies gewährleistet ein angenehmes, zugluftfreies Raumklima mit gleichmäßiger Temperatur.
- Anders als bei traditionellen Heizsystemen werden hier keine Luftbewegungen verursacht. Durch die verringerte Ausbreitung von Staub, Bakterien und Gerüchen wird die Qualität des Raumklimas verbessert.
- Punkt- und Flächenheizung versorgt die richtige Fläche mit dem richtigen Komfort.

Unauffällig

- Das System arbeitet vollkommen leise.
- Die Montage an der Decke oder als Einbauelement in Zwischendecken ermöglicht ein unauffälliges Heizen.


Platzsparend

- Bei Deckenmontage der Wärmestrahler wird wertvoller Platz an den Wänden und am Boden eingespart.
- Schützt vor kalter Zugluft, sodass auch die Fläche in Fensternähe verwendet werden kann.

Wärmestrahler wärmen zuerst die Personen, dann indirekt die Luft. Die abgegebene Wärme, die der gefühlten Temperatur entspricht, ist dadurch etwas höher als die eigentliche Lufttemperatur.

Wärmestrahlersysteme haben den besonderen Komfort, dass die Lufttemperatur um einige Grad niedriger sein kann als bei herkömmlichen Systemen, wobei mit jeder Temperaturreduzierung um ein Grad der Energieverbrauch um etwa 5 % gesenkt wird.


Punkt- und Flächenheizung

Mit Wärmestrahlern können verschiedene Bereiche im selben Raum verschiedene Temperaturen haben. Große Flächen können dabei in kleinere Zonen eingeteilt werden, so dass für jede Zone eine andere Komfortstufe eingestellt werden kann.

Es ist außerdem möglich, die Wärme auf einen bestimmten Punkt zu konzentrieren, z. B. auf einen einzelnen Arbeitsplatz. Das punktuelle Heizen ist im Wesentlichen wie eine punktuelle Beleuchtung steuerbar, wobei die Heizintensität nach Bedarf geregelt wird.

Schutz vor kalter Zugluft
Eine kalte Oberfläche, z. B.
ein Fenster, hat eine kühlende
Wirkung auf die umgebende Luft.
Wärmestrahler schützen wirkungsvoll
und kostengünstig vor kalter
Zugluft von Fensterflächen, indem
die Fensterfläche aufgeheizt wird.
Je kälter das Fenster, desto mehr
Strahlungswärme ist erforderlich. Die
Heizstrahlen gehen "automatisch"
an die Stelle, an der sie am meisten
benötigt werden, wodurch das
Schaffen eines komfortablen
Raumklimas erleichtert wird.

Ergänzende Heizung
Als Ergänzung zu anderen
Heizsystemen oder bei einer
Erweiterung sind Wärmestrahler
häufig eine einfache, kostengünstige
Lösung. Bei einem wasserbeheizten
Gebäude ist es oft einfacher
und flexibler, einige elektrische
Wärmestrahler zu installieren, als das
Heizrohrsystem zu erweitern.

Weitere Informationen über die verschiedenen Heizungstypen finden sie im technischen Handbuch.

Die Auswahl des richtigen Wärmestrahlers

Wärmestrahler sind in unterschiedlichen Konstruktionen erhältlich. Vor allem die Installationshöhe, die Umgebung und der Typ der gewünschten Heizung bestimmen die Auswahl des Produkts (siehe vorherige Seite). Um ein komfortables Raumklima zu erzeugen, ist es wichtig, den richtigen Typ von Wärmestrahlern zu wählen.

Ein Infrarotstrahler mit Halogenlampen von ca. 2000 °C liefert eine intensive Kurzwellenstrahlung. Ein solcher Strahler eignet sich gut für die Verwendung im Freien, wo Windeinwirkungen ausgeglichen werden müssen. Für eine ähnliche, aber sanftere Wärme, kann ein Wärmestrahler mit Rohrelementen von ca. 750 °C verwendet werden. Die Wärme, die von diesen Wärmestrahlern abgegeben wird, kann mit der Wärmestrahlung eines offenen Kamins verglichen werden.

Die großflächigen Platten Thermocassette und Aquaztrip mit einer Oberflächentemperatur von ca. 70-100 °C liefern eine langwellige Wärmestrahlung und sorgen für eine angenehme Wärme und eine gute Verteilung in Räumen mit normaler Deckenhöhe.

Elztrip mit einer Oberflächentemperatur von ca. 320 °C liefern mittelwellige Wärmestrahlung, wodurch sich das Gerät für mehrere Einsatzbereiche im Gebäude eignet, von der Heizung großer Werkshallen bis zur Flächenund Punktheizung.

Um den besten Heizkomfort zu erzielen, ist eine Lösung mit einer größeren Anzahl Strahlern mit geringer Leistung einer Lösung mit weniger Strahlern mit hoher Leistung vorzuziehen.

Bei Flächen- oder Punktheizung sollten die Wärmestrahler so montiert werden, dass die Wärme mindestens aus zwei unterschiedlichen Richtungen abgestrahlt wird. Dies ist besonders wichtig, wenn die Wärmestrahler in niedrigeren Höhen montiert werden.

Die unten stehende Tabelle und die Beispiele auf den folgenden Seiten helfen Ihnen bei der Auswahl des richtigen Wärmestrahlers.


Unsere Wärmestrahler

Тур	Heizung	Installations- höhe [m]	Leistung [W]	Oberflächen- temperatur [°C]	Heizelement
Büroräume, Geschäftsräum	e und öffentlicl	ne Räume			
Thermoplus	Ź	2–3	300-900	180	Aluminium-Heizstrahler
Thermocassette	Ź	< 3	300-600	100	Wärmemembran
Elztrip EZ100	£	2,5–4	600-1500	320	Aluminium-Heizstrahler
Industrie und Großräume					
Elztrip EZ200	Ź	3–10	800-2200	320	Aluminium-Heizstrahler
Elztrip EZ300	£	4–15	3600-4500	320	Aluminium-Heizstrahler
Infrarot IR	£	4,5–20	3000-6000	700	Infrarot-Heizstab
Infrarot IRCF	£	3–5	1500-4500	2200*2	Halogenlampe
Aquaztrip Plan	•	< 10	184-511	70*1	Aluminium-Heizstrahler
Aquaztrip Flex	•	2,5–10	113-336*1	70*1	Aluminium-Heizstrahler
Aquaztrip Comfort	•	4–30	154-237* ¹	70*1	Aluminium-Heizstrahler
Außenbereiche					
Infrarot CIR	£	2–2,5	500-2000	750	Infrarot-Heizstab
Infrarot IHC	1	1,8–3	1150-1750	1200*2	Kohlefaserlampe
Infrarot IH	Ź	1,8–3,5	1000-2000	2200*2	Halogenlampe
Infrarot ELIR	1	2–3	1200	2200*2	Halogenlampe

Unsere Produkte sind in drei Hauptanwendungsbereiche untergliedert: "Büroräume, Geschäftsräume und öffentliche Räume", "Industrie und Großräume" sowie "Außenbereiche", die meisten Produkte können allerdings in mehreren Anwendungsbereichen genutzt werden.

^{*1)} Pro Meter, abhängig von der Wassertemperatur.

^{*2)} Heizfadentemperatur

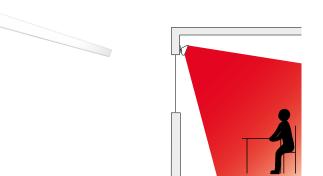
Außenbereiche

Die Sommersaison lässt sich durch den Einsatz von Wärmestrahlern für den Außenbetrieb verlängern. Je nach Umgebung sind verschiedene Lösungen möglich. In Freiluftrestaurants ohne schützende Wände sind Geräte mit einer hohen Oberflächentemperatur erforderlich. Je besser (dichter) der Raum verschlossen ist, desto stärker erhöht sich die Lufttemperatur. Das bedeutet, dass dann keine Wärmestrahler mit hohen Oberflächentemperaturen erforderlich sind.

Installationsbeispiele für Wärmestrahler

Wärmestrahler von Frico sind für verschiedene Heizungsarten und unterschiedliche Anwendungsbereiche lieferbar. Um Ihnen die Produktauswahl zu erleichtern, finden Sie auf den folgenden Seiten einige typische Beispiele. Detailliertere Informationen über wichtige Faktoren, die bei der Auswahl von Wärmestrahlern beachtet werden sollten, finden Sie auf den vorangegangenen Seiten.

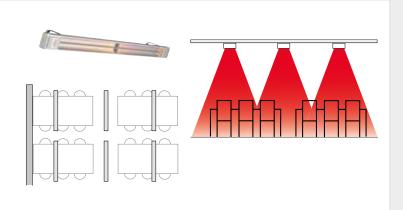
Grundlegende Kriterien:


- 1. Typ der Einrichtung Geschäft, Lager usw.
- 2. Art der Heizung Vollheizung, Zonenheizung, Schutz vor kalter Zugluft
- 3. Höhe: Installationshöhe
- 4. Montage: an Wand oder Decke
- 5. Anschluss: mit Elektroheizung oder Wasserheizung

Vollheizung, Cafeteria 1. Typ der Einrichtung: Cafeteria 2. Heizungstyp: Vollheizung 3. Höhe: 2,80 Meter 4. Montage: An der Decke 5. Anschluss: mit Elektroheizung Empfehlung: Thermocassette kann in Zwischendecken bündig montiert werden. Wenn Thermocassette für die Vollheizung verwendet wird, sollten die Geräte wie in der Abbildung gezeigt über die Decke verteilt werden.

Schutz vor kalter Zugluft, Büro

- 1. Typ der Einrichtung: Büro
- 2. Heizungstyp: Schutz vor kalter Zugluft
- 3. Höhe: 3 Meter
- 4. Montage: An der Wand
- 5. Anschluss: mit Elektroheizung


Empfehlung: Thermoplus ist für den Schutz vor kalter Zugluft bei normalgroßen Fenstern vorgesehen. Die Wärmestrahler werden über den Fenstern montiert und decken deren gesamte Breite ab.

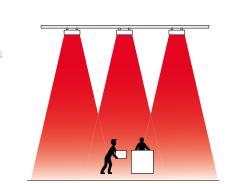
Flächenheizen, Restaurantterrasse

- 1. Typ der Einrichtung: geschützte Restaurantterrasse
- 2. Heizungstyp: Zonenbeheizung
- 3. Höhe: 2,5 Meter
- 4. Montage: Decke (über den Tischen)
- 5. Anschluss: mit Elektroheizung

Empfehlung: Mehrere CIR in Reihen über den Tischen sorgen für einen hohen Komfort der Gäste bei großen Terrassen.

Flächenheizung, Freiluftcafé

- 1. Typ der Einrichtung: Freiluftcafé
- 2. Heizungstyp: Flächenheizung
- 3. Höhe: 3 Meter
- 4. Montage: Wand und Deckenstruktur
- 5. Anschluss: mit Elektroheizung


Empfehlung: IH kann an der Wand des Restaurants oder an jeder beliebigen Deckenstruktur montiert werden. Für den besten Komfort ist gesorgt, wenn die Strahler aus zwei Richtungen heizen.

Vollheizen, Werkstatt

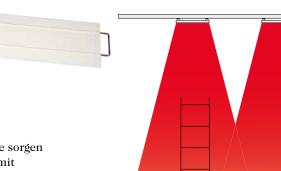
- 1. Typ der Einrichtung: Werkstatt
- 2. Heizungstyp: Vollheizung
- 3. Höhe: 5 Meter
- 4. Montage: An der Decke
- 5. Anschluss: mit Elektroheizung

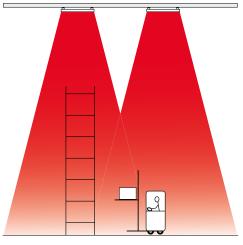
Empfehlung: Mehrere gleichmäßig über die zu beheizende Fläche verteilte EZ300 sorgen für ein angenehmes Raumklima.

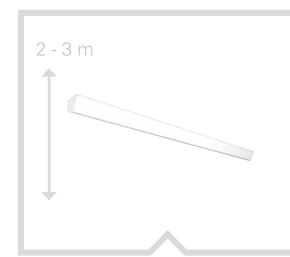
Flächenheizen, Fabrik

- 1. Typ der Einrichtung: Arbeitsplatz in Fabrik
- 2. Heizungstyp: Flächenheizung
- 3. Höhe: 6 Meter
- 4. Montage: An der Decke
- 5. Anschluss: mit Elektroheizung

Empfehlung: Die speziellen Reflektoren von IR leiten die Wärme nur auf eine bestimmte Fläche. Damit eignet sich IR sehr gut für die Flächenheizung in der Industrie.






Vollheizen, Lagerhaus

- 1. Typ der Einrichtung: Lagerhaus
- 2. Heizungstyp: Vollheizung
- 3. Höhe: 8 Meter
- 4. Montage: An der Decke
- 5. Anschluss: mit Wasserheizung

Empfehlung: Zeilen mit Aquaztrip in der Decke sorgen für ein angenehmes Raumklima in Gebäuden mit Wasserheizungssystemen.



Thermoplus EC

Thermoplus wird über den Fenstern montiert und bietet einen wirksamen Schutz vor kalter Zugluft. Dank seiner schlanken Ausführung ist dieser Wärmestrahler auch für Heizbereiche mit eingeschränkten Platzverhältnissen, wie Bäder, geeignet. Darüber hinaus kann er als preisgünstige und flexible Alternative zu Fußbodenheizungen eingesetzt werden.

Thermocassette HP

Thermocassette ist als unauffällige Heizung für Büros, Bäder, Schulen usw. geeignet. An der Decke oder in Zwischendecken montiert, sind die Geräte hervorragend zum Voll- und Punktheizen, z. B. einer Rezeption, geeignet. Bei der Montage in Zwischendecken ist das Gerät gut vor Beschädigungen geschützt.

Elztrip EZ100

Der Wärmestrahler EZ100 wurde für das Voll- und Zusatzheizen sowie zum Schutz vor kalter Zugluft an Fenstern in Bürogebäuden, Geschäften, Restaurants usw. entwickelt.

Thermoplus EC

Schlanker Wärmestrahler zum Schutz vor kalter Zugluft

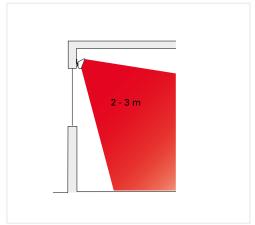
Thermoplus wird über den Fenstern montiert und bietet einen wirksamen Schutz vor kalter Zugluft. Dank seiner schlanken Ausführung ist dieser Wärmestrahler auch für Heizbereiche mit eingeschränkten Platzverhältnissen, wie Bäder, geeignet. Darüber hinaus kann er als preisgünstige und flexible Alternative zu Fußbodenheizungen eingesetzt werden.

Thermoplus ist mit weißer Farbe beschichtet, die unaufdringlich wirkt und äußerst kratzfest ist. Die schlanke Form lässt das Gerät bei einer Montage im Deckenwinkel praktisch verschwinden.

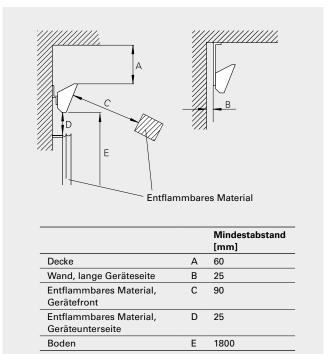
- Thermoplus ist in folgenden Ausführungen lieferbar:
 - Typ EC, für Trockenräume. IP20.
 - Typ ECV, für Feuchträume. IP44.
 - Typ ECVTN, für Feuchträume. Mit integriertem Thermostat (+5 +37 °C). IP44.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, müssen die Geräte EC und ECV mit dem Thermostat TAP16R (Zubehör) installiert werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". ECVTN ist mit einem integrierten Thermostat ausgestattet, das der Ökodesign-Verordnung entspricht.
- Wandhalterungen inklusive. Ein Set zur Deckenmontage ist ebenfalls als Zubehör erhältlich.
- Frontplatte aus kratzfestem, weiß beschichtetem Aluminium. Farbe: RAL 9010, Rückplatte aus feuerverzinktem Stahlblech.

Thermoplus EC für Trockenräume (IP20)

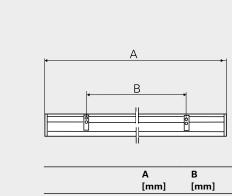
Тур	Heizleistung [W]	Spannung [V]	Stromstärke [A]	Oberflächentemp. [°C]	LxHxT [mm]	Gewicht [kg]
EC45021	450	230V~	2,0	180	1076x100x90	2,6
EC60021	600	230V~	2,6	180	1505x100x90	3,7
EC75021	750	230V~	3,3	180	1810x100x90	4,4
EC90021	900	230V~	3,9	180	2140x100x90	4,8
EC90031	900	400V2~	2,3	180	2140x100x90	4,8


Thermoplus ECV für Feuchträume (IP44)

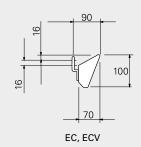
Тур	Heizleistung	Spannung	Stromstärke	Oberflächentemp.	LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
ECV30021	300	230V~	1,3	180	870×100×90	2,3
ECV55021	550	230V~	2,4	180	1505x100x90	4,0
ECV55031	550	400V2~	1,4	180	1505x100x90	4,0
ECV70021	700	230V~	3,0	180	1810x100x90	4,7
ECV70031	700	400V2~	1,8	180	1810x100x90	4,7

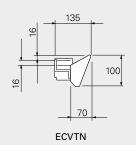

Thermoplus ECVTN für Feuchträume. Mit integriertem Thermostat (IP44)

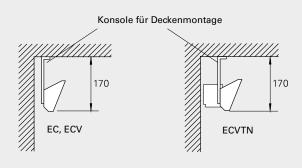
Тур	Heizleistung [W]	Spannung [V]	Stromstärke [A]	Oberflächentemp. [°C]	LxHxT [mm]	Gewicht [kg]
ECVTN30021	300	230V~	1,3	180	870x100x135	2,3
ECVTN55021	550	230V~	2,4	180	1505×100×135	4,6
ECVTN70021	700	230V~	3,0	180	1810x100x135	5,0


Montagehöhe

Mindestabstand




Abmessungen


	Α	В
	[mm]	[mm]
EC450	1076	600
EC600	1505	900
EC750	1810	1200
EC900	2140	1800
ECV/ECVTN300	870	400
ECV/ECVTN550	1505	900
ECV/ECVTN700	1810	1200

Montage an der Wand

Montage an der Decke

 ϵ

Thermoplus

Montage und Installation

Thermoplus wird horizontal installiert, z. B. am Deckenwinkel oberhalb des Fensters. Wandhalterungen inklusive. Ein Set zur Deckenmontage ist ebenfalls als Zubehör erhältlich.

Thermoplus ist für eine feste Installation vorgesehen. Mehrere Thermoplus können an einen Thermostaten angeschlossen werden.

Regelungsoptionen

Thermoplus EC und ECV müssen gemeinsam mit dem Thermostat TAP16R installiert werden. Dieses verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". Bitte beachten Sie, dass Produkte mit $400~\rm V$ ~ eine RB3-Relaisbox erfordern.

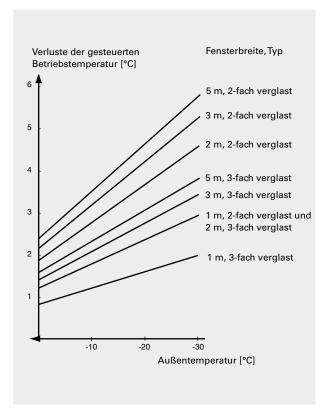
Schutzart IP44 wird erreicht durch das Hinzufügen eines Schutzgehäuses TEP44 und eines externen Temperaturfühlers RTX54, der den internen Fühler ersetzt.

Thermoplus ECVTN hat ein integriertes Thermostat (+5 - +37 °C).

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler und Zubehör

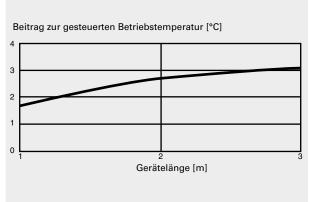
Тур	Beschreibung	HxBxT
		[mm]
TAP16R	Elektronischer Thermostat, 16A, IP21	87x87x53
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10KΩ, IP54	82x88x25
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44	155x87x43
TF1	Konsole für Deckenmontage (2 Stück)	



Der direkte Fensterbereich kann effektiv genutzt werden, um kalte Zugluft zu verhindern. Direkt hintereinander montiert bilden hier mehrere Thermoplus eine durchgehende Leiste.

Thermoplus schafft ein angenehm warmes Klima im Raum- und Bodenbereich und ist eine kostengünstige Alternative zu einer Fußbodenheizung.

Temperatureinfluss in der Nähe der Fenster



Temperaturunterschiede

Das linke Diagramm zeigt die Temperaturverluste durch ein 1,7 Meter hohes Fenster, gemessen im Raum in 1 Meter Distanz von der Fenstermitte.

Heizungsbeitrag

Der Beitrag zur Betriebstemperatur wird bei einer Deckenhöhe von 2,4 Metern in 1 Meter Distanz von der Fenstermitte gemessen.

Thermoplus wird direkt im Deckenwinkel montiert und hat dadurch einen minimalen Platzbedarf.

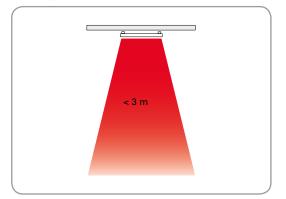
Thermoplus schützt vor kalter Zugluft. Das Wärmestrahlergehäuse wirkt sehr diskret, da es weit oben an einem Träger befestigt ist.

Thermocassette HP

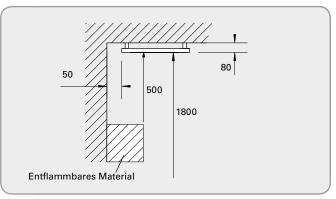
Unauffällige Wärmestrahler-Kassette für Decken- oder Zwischendeckenmontage

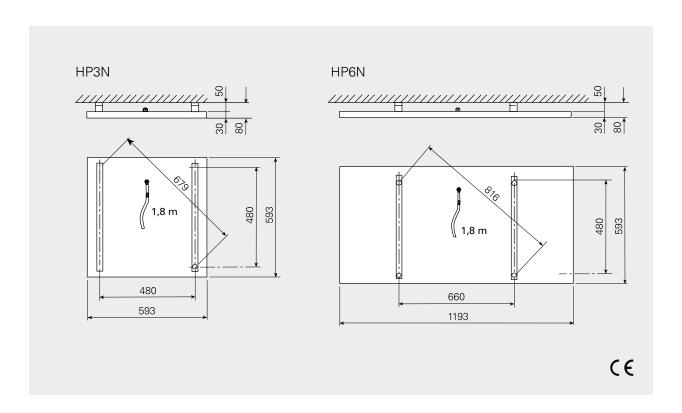
Thermocassette ist als unauffällige Heizung für Büros, Bäder, Schulen usw. geeignet. An der Decke oder in Zwischendecken montiert, sind die Geräte hervorragend zum Voll- und Punktheizen, z. B. einer Rezeption, geeignet. Bei der Montage in Zwischendecken ist das Gerät gut vor Beschädigungen geschützt.

Beim Einbau in Zwischendecken wird der Wärmestrahler zum Bestandteil der Decke.


- Dank seiner geringen Oberflächentemperatur (max. 100 °C) eignet sich Thermocassette gut für geringe Deckenhöhen. Es besteht kein Verbrennungsrisiko für in der Nähe befindliche Personen.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, muss das Gerät mit dem Thermostat TAP16R (Zubehör) installiert werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen".
- Hohe Schutzklasse, IP55.
- Erfüllt die Anforderungen an brennbare Bereiche gemäß SEMKO 111FF.
- Rostfreies Gehäuse aus feuerverzinkten und pulverbeschichteten Stahlblechen. Farbe: weiß, RAL 9016, NCS S 0500-N. Auf Anfrage sind auch weitere RAL-Farben erhältlich.

Thermocassette HP (IP55)


Тур	Heizleistung	Spannung	Stromstärke	Max. Oberflächen- temperatur	Abmessungen LxBxH	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
HP3N	300	230 V~	1,3	100	593x593x80*	5,8
HP6N	600	230 V~	2,6	100	593x1193x80*	10,7


^{*)} Höhe mit Halterungen

Montagehöhe

Mindestabstand

Die Deckenmontage schützt die Thermocassette gegen Beschädigungen.

Eine Thermocassetten-Heizung in einer Zwischendecke ist eine attraktive und fast unsichtbare Heizmöglichkeit. Die Lage der Heizkassetten kann bei einer veränderten Raumnutzung sehr einfach geändert werden.

Positionierung, Montage und Installation

Aufstellung

Faustregel zur Berechnung der Anzahl Wärmestrahler, die man zum Beheizen eines Raumes benötigt:

Mindestanzah von Strahlern Fläche der Räumlichkeiten [m²]
Installationshöhe [m] × Installationshöhe [m]

Diese Formel ergibt eine erste Schätzung der Mindestanzahl von Wärmestrahlern, die für ein angenehmes Raumklima benötigt werden. Um die benötigte Leistung pro Wärmestrahler zu errechnen, muss zuerst der Gesamtleistungsbedarf berechnet werden, siehe Technisches Handbuch.

Montage in Zwischendecken.

Montage

Der HP lässt sich in Zwischendecken einbauen; hierfür die Halterungen an der Decke oberflächig montieren oder mittels Drahtseilen aufhängen. Montagehalterungen sind inklusive. Ein Set zur Drahtmontage ist als Zubehör erhältlich.

Installation

HP wird mit 1,8 m Kabel ohne Stecker geliefert.

Zubehör

74701, Seil-Montageset

Komplettes Montageset für Seilabhängung, hängt ca. $0,5\,\mathrm{m}$ tiefer.

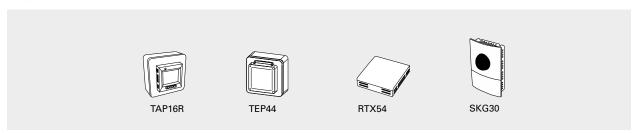
Тур	Beschreibung	
74701	Seil-Montageset	

Regelungsoptionen

Der Strahler muss mit einer der folgenden Steuerungsoptionen ergänzt werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". Schutzart IP44 wird erreicht durch das Hinzufügen eines Schutzgehäuses TEP44 und eines externen Temperaturfühlers RTX54, der den internen Fühler ersetzt.

Regelung über Thermostat

• TAP16R, Elektronischer Thermostat


Regelung durch Thermostat und Schwarz-Kugel-Sensor

- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler

Тур	Beschreibung	HxBxT
		[mm]
TAP16R	Elektronischer Thermostat, 16A, IP21	87x87x53
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10KΩ, IP54	82x88x25
SKG30	Schwarz-Kugel-Sensor, NTC 10 KΩ, IP30	115x85x40

Steuerungen für Installationen, die nicht unter die Ökodesign-Verordnung (EU) 2015/1188 fallen

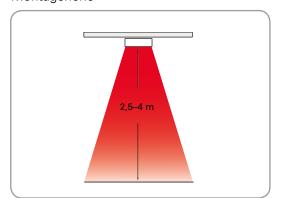
Wenn der Strahler für technische Heizzwecke und nicht als Einzelraumheizgerät verwendet wird, können die folgenden Regelungen verwendet werden.

Тур	Beschreibung	HxBxT
		[mm]
KRT1900	Raum-Kapillarrohrthermostat, IP55	165x57x60
KRTV19	Kapillarrohrthermostat mit Knopf, IP44	165x57x60

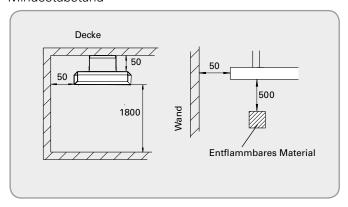
Elztrip EZ100

Einzelpaneel-Heizstrahler für Büros, Geschäfte, usw.

Der Wärmestrahler EZ100 wurde für das Vollund Zusatzheizen sowie zum Schutz vor kalter Zugluft an Fenstern in Bürogebäuden, Geschäften, Restaurants usw. entwickelt.

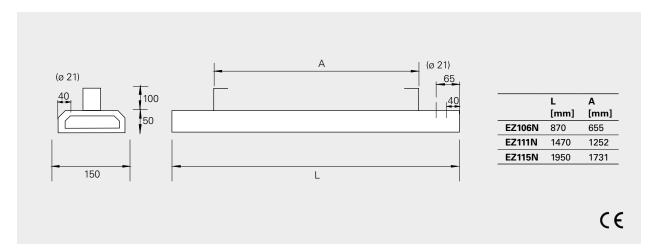

EZ100 ist ein Einzelpaneel-Heizstrahler mit klarem, einfachem Design, das sich gut in die Elektroinstallationen einfügt.

- Die Komponenten sind integriert und die Oberfläche ist so strukturiert, dass ein optimaler Wirkungsgrad erzielt wird.
- Die Wärmestrahler sind für eine Reihenschaltung geeignet.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, muss das Gerät mit dem Thermostat TAP16R (Zubehör) installiert werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen".
- Halterungen zur einfachen Montage an der Decke werden mitgeliefert.
- Die Montagekonsole ist als Zubehör erhältlich.
- Rostfreies Gehäuse aus feuerverzinkten und pulverbeschichteten Stahlblechen. Farbe: weiß, RAL 9016, NCS S 0500-N. Heizpaneele aus natürlich anodisiertem Aluminium.


Elztrip EZ100 (IP44)

Тур	Leistung	Spannung	Stromstärke	Max. Oberflächen- temperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
EZ106N	600	230V~	2,6	320	870x50x150	3,2
EZ111N	1100	230V~	4,8	320	1470x50x150	5,4
EZ115N	1500	230V~	6,5	320	1950x50x150	7,0

Montagehöhe



Mindestabstand

2018-06-15

Abmessungen

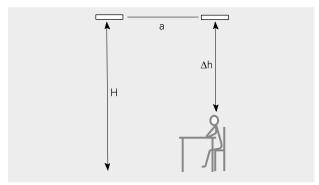
Positionierung, Montage und Installation

Aufstellung

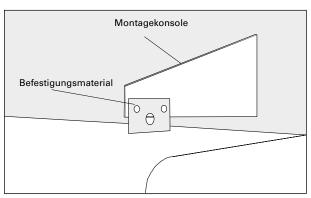
Faustregel zur Berechnung der Anzahl Wärmestrahler, die man zum Beheizen eines bestimmten Bereiches benötigt:

Mindestanzahl von Strahlern = Fläche der Räumlichkeiten [m²]
Installationshöhe [m] × Installationshöhe [m]

Diese Formel vereinfacht eine erste Schätzung der Mindestanzahl Wärmestrahler, die benötigt werden, um ein angenehmes Raumklima aufrechtzuerhalten. Um die benötigte Leistung pro Wärmestrahler zu errechnen, muss zuerst der Gesamtleistungsbedarf berechnet werden, siehe Technisches Handbuch.


Bei der Planung der Elztrip-Installation sollte man beachten, dass der Abstand zwischen den Wärmestrahlern nicht größer sein darf als der Abstand zwischen Wärmestrahler und Fußboden, d. h. "a" sollte kürzer sein als "H" (siehe Abb.). In Räumen, die nicht oft genutzt werden, sind die Anforderungen an den Komfort gewöhnlich geringer und der Abstand zwischen den Wärmestrahlern kann vergrößert werden. In Räumen, die regelmäßig genutzt werden, sollte der Abstand zwischen einer sitzenden Person und dem Wärmestrahler mindestens 1,5 bis 2 m (Δh) betragen. Wenn diese beiden Richtlinien befolgt werden, wird die maximale Temperaturdifferenz im Betrieb $\Delta t_{op} = 5$ °C das Wohlbefinden nicht beeinträchtigen. Das heißt, die Differenz zwischen tatsächlicher und gefühlter Temperatur beträgt nicht mehr als 5 °C.

Montage


Elztrip wird horizontal an Decken, in Ankerschienen, an Kabeln, hängend usw. installiert. Halterungen zur einfachen Montage an der Decke werden mitgeliefert. Wird der Strahler mit Drahtseilen aufgehängt, sollten die vier Montagepunkte am Strahler verwendet werden. Die Montagekonsole ist als Zubehör erhältlich.

Installation

Elztrip ist für eine feste Installation vorgesehen. Die Wärmestrahler sind für eine Reihenschaltung geeignet.

Empfohlener Abstand für Elztrip

Wandmontagekonsolen EZMVK (separat lieferbar).

Regelungsoptionen

Der Strahler muss mit einer der folgenden Steuerungsoptionen ergänzt werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". Schutzart IP44 wird erreicht durch das Hinzufügen eines Schutzgehäuses TEP44 und eines externen Temperaturfühlers RTX54, der den internen Fühler ersetzt.

Regelung über Thermostat

• TAP16R, Elektronischer Thermostat

Regelung durch Thermostat und Schwarz-Kugel-Sensor

- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor

Regelung durch Thermostat und Präsenzmelder

- TAP16R, Elektronischer Thermostat
- PDK65, Präsenzmelder mit Stromversorgung

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler und Zubehör

Тур	Beschreibung	HxBxT [mm]
TAP16R	ElektronischerThermostat, 16A, IP21	87x87x53
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10K Ω , IP54	82x88x25
SKG30	Schwarz-Kugel-Sensor, NTC 10 KΩ, IP30	115x85x40
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max. 2,3 kW, IP42/IP65	102x70x50 88x88x39
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42	102x70x50
EZMVK	Montagekonsole	

Steuerungen für Installationen, die nicht unter die Ökodesign-Verordnung (EU) 2015/1188 fallen

Wenn der Strahler für technische Heizzwecke und nicht als Einzelraumheizgerät verwendet wird, können die folgenden Regelungen verwendet werden.

Typ Beschreibung		HxBxT [mm]	
KRT1900	Raum-Kapillarrohrthermostat, IP55	165x57x60	
KRTV19	Kapillarrohrthermostat mit Knopf, IP44	165x57x60	

Flure sind sehr schwer zu beheizen, aber der an der Decke montierte EZ100 heizt dort, wo die Wärme benötigt wird.

Durch das Strahlungsprinzip wird die Luft nicht direkt erwärmt. Dies gewährleistet ein angenehmes, zugluftfreies Raumklima mit gleichmäßiger Temperatur.

Gebäude, die nur unregelmäßig genutzt werden, können schnell und energiesparend beheizt werden. Der Wärmestrahler EZ100 passt gut zu elektrischen Anlagen.

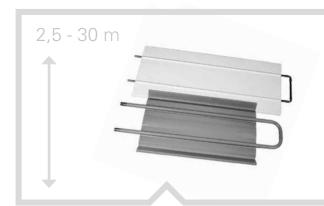
Punktuelles Heizen mit dem EZ100 ist sicher und hygienisch.

Elztrip EZ200

EZ200 wurde für vollständiges und zusätzliches Heizen sowie als Schutz vor kalter Zugluft von Fenstern in Umgebungen wie Kaufhäusern, Montagehallen und Industriegebäuden etc. entwickelt.

Elztrip EZ300

EZ300 wurde für vollständiges und zusätzliches Heizen in industriellen Umgebungen wie Lagerhallen, Werkhallen etc. entwickelt.


Industrie-Infrarotstrahler IR

IR-Wärmestrahler sind für das Voll- oder Zusatzheizen von Räumen mit großem Volumen und hohen Decken geeignet. Diese Strahler können auch im Freien eingesetzt werden, z. B. auf Sporttribünen oder Laderampen, um diese trocken und frostfrei zu halten.

Infrarotstrahler IRCF

Der Infrarotstrahler IRCF ist besonders für das Punktheizen in Räumen mit großem Luftvolumen, wie Kirchen, Flugzeughangars und Zelten, geeignet. Dank seiner hohen Effizienz und kompakten Größe ist er für viele schwierige Anwendungen wie geschaffen.

Aquaztrip

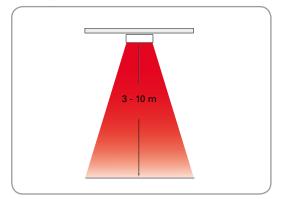
Aquaztrip ist unser Produktsortiment wasserbeheizter Wärmestrahlplatten mit einem breitgefächerten Einsatzbereich in Gewerbe- sowie Industriegebäuden.

Zum Sortiment gehören die Modelle Aquaztrip Plan, Aquaztrip Flex und Aquaztrip Comfort.

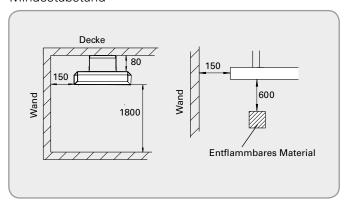
Elztrip EZ200

Wärmestrahler mit zwei Heizpaneelen für Kaufhäuser und Industriegebäude

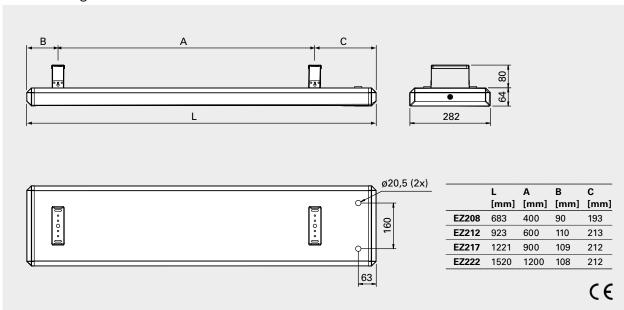
EZ200 wurde für vollständiges und zusätzliches Heizen sowie als Schutz vor kalter Zugluft von Fenstern in Umgebungen wie Kaufhäusern, Montagehallen und Industriegebäuden etc. entwickelt.

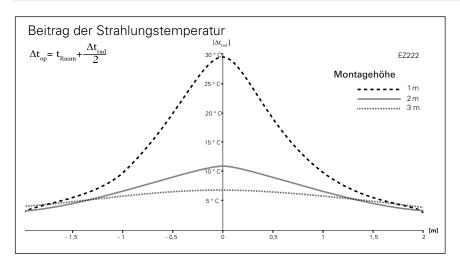

EZ200 ist ein Wärmestrahler mit zwei Heizpaneelen mit klarem, einfachem Design, das sich gut in die Elektroinstallationen einfügt.

- Die Komponenten sind integriert und die Oberfläche ist so strukturiert, dass ein optimaler Wirkungsgrad erzielt wird.
- Die Wärmestrahler sind für eine Reihenschaltung geeignet.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, muss das Gerät mit dem Thermostat TAP16R (Zubehör) installiert werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen".
- Standardhalterungen zur Installation inklusive.
- Rostfreies Gehäuse aus feuerverzinkten und pulverbeschichteten Stahlblechen. Farbe: RAL 9016, NCS S 0500-N. Heizpaneele aus natürlich anodisiertem Aluminium.


Elztrip EZ200 (IP44)

	Heizleistung	Spannung [V]	Stromstärke [A]	Max. Oberflächen- temperatur [°C]	Abmessungen LxHxT [mm]	Gewicht [kg]
	[W]					
EZ208	800	230V~	3,5	320	683x64x282	4,9
EZ212	1200	230V~	5,2	320	923x64x282	6,8
EZ217	1700	230V~	7,4	320	1221x64x282	8,8
EZ222	2200	230V~	9,6	320	1520x64x282	10,7
EZ20831	800	400V2~	2,0	320	683x64x282	4,9
EZ21231	1200	400V2~	3,0	320	923x64x282	6,8
EZ21731	1700	400V2~	4,3	320	1221x64x282	8,8
EZ22231	2200	400V2~	5,5	320	1520x64x282	10,7


Montagehöhe



Mindestabstand

Abmessungen

Elztrip ist eine elegante und effektive Lösung, um kalte Zugluft zu vermeiden. Das Hilton in Malmö hat sich daher für diese Lösung in seiner großen Glaslobby entschieden.

EZ200 eignet sich ideal, um Arbeitsstationen zu heizen.

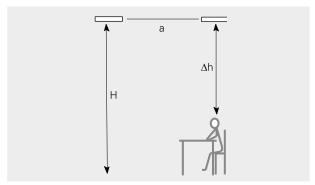
Positionierung, Montage und Installation

Aufstellung

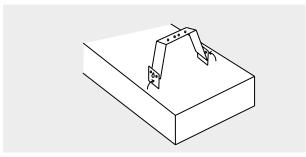
Faustregel zur Berechnung der Anzahl Wärmestrahler, die man zum Beheizen eines bestimmten Bereiches benötigt:

 $\begin{array}{c} \mbox{Mindestanzahl} \\ \mbox{W\"{a}rmestrahler} \end{array} \begin{tabular}{l} = & \frac{\mbox{Fl\"{a}\'{c}he des Geb\"{a}\'{u}des [m^2]}}{\mbox{Installationsh\"{o}he [m]}^2} \end{array}$

Diese Formel vereinfacht eine erste Schätzung der Mindestanzahl Wärmestrahler, die benötigt werden, um ein angenehmes Raumklima aufrechtzuerhalten. Um die benötigte Leistung pro Wärmestrahler zu errechnen, muss zuerst der Gesamtleistungsbedarf berechnet werden, siehe Technisches Handbuch.


Bei der Planung der Elztrip-Installation sollte man beachten, dass der Abstand zwischen den Wärmestrahlern nicht größer sein darf als der Abstand zwischen Wärmestrahler und Fußboden, d. h. "a" sollte kürzer sein als "H" (siehe Abb.). In Räumen, die nicht oft genutzt werden, sind die Anforderungen an den Komfort gewöhnlich geringer und der Abstand zwischen den Wärmestrahlern kann vergrößert werden. In Räumen, die regelmäßig genutzt werden, sollte der Abstand zwischen einer sitzenden Person und dem Wärmestrahler mindestens 1,5 bis 2 m (Δh) betragen. Wenn diese beiden Richtlinien befolgt werden, wird die maximale Temperatur
differenz im Betrieb $\Delta t_{\mbox{\tiny op}} = 5~^{\circ}{\rm C}$ das Wohlbefinden nicht beeinträchtigen. Das heißt, die Differenz zwischen tatsächlicher und gefühlter Temperatur beträgt nicht mehr als 5 °C.

Montage


Elztrip wird horizontal an Decken, in Ankerschienen, an Kabeln, hängend usw. installiert. Standardhalterungen zur Installation inklusive. Wird der Strahler mit Drahtseilen aufgehängt, sollten die vier Montagepunkte am Strahler verwendet werden. Die Standardhalterungen für die Montage sind im Lieferumfang enthalten. Bei der Montage an Drähten müssen geeignete Klammern eingesetzt werden, die verhindern, dass das Gerät rutscht.

Installation

Elztrip ist für eine feste Installation vorgesehen. Die Wärmestrahler sind für eine Reihenschaltung geeignet.

Empfohlener Abstand für Elztrip

Standardhalterung

Das Heizen mit EZ200 ist hygienisch, da keine Luftbewegungen verursacht werden.

EZ200 gibt direkt Wärme ab, ein Vorheizen ist nicht nötig. Dadurch eignet sich das Gerät besonders für Gebäude, die nur in unregelmäßigen Abständen genutzt werden.

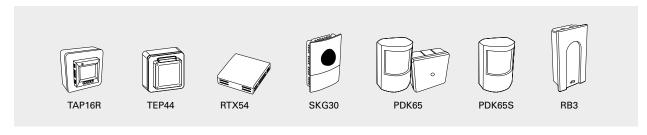
Regelungsoptionen

Der Strahler muss mit einer der folgenden Steuerungsoptionen ergänzt werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". Schutzart IP44 wird erreicht durch das Hinzufügen eines Schutzgehäuses TEP44 und eines externen Temperaturfühlers RTX54, der den internen Fühler ersetzt. Bitte beachten Sie, dass Produkte mit 400 V~ eine RB3-Relaisbox erfordern.

Regelung über Thermostat

- TAP16R, Elektronischer Thermostat
- RB3, Relaisbox 400 V 3 N~ (EZ200 400V~)

Regelung durch Thermostat und Schwarz-Kugel-Sensor


- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor
- RB3, Relaisbox 400 V 3 N~ (EZ200 400V~)

Regelung durch Thermostat und Präsenzmelder

- TAP16R, Elektronischer Thermostat
- PDK65, Präsenzmelder mit Stromversorgung
- RB3, Relaisbox 400 V 3 N~ (EZ200 400V~)

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler und Zubehör

Тур	Beschreibung	HxBxT [mm]
TAP16R	ElektronischerThermostat, 16A, IP21	87x87x53
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10K Ω , IP54	82x88x25
SKG30	Schwarz-Kugel-Sensor, NTC 10 K Ω , IP30	115x85x40
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max. 2,3 kW, IP42/IP65	102x70x50 88x88x39
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42	102x70x50
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44	155x87x43

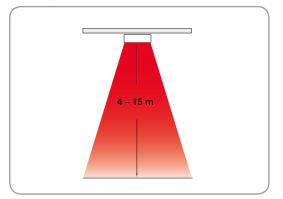
Steuerungen für Installationen, die nicht unter die Ökodesign-Verordnung (EU) 2015/1188 fallen

Wenn der Strahler für technische Heizzwecke und nicht als Einzelraumheizgerät verwendet wird, können die folgenden Regelungen verwendet werden.

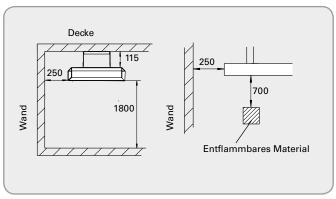
Тур	Beschreibung	HxBxT [mm]	
KRT1900	Raum-Kapillarrohrthermostat, IP55	165x57x60	
KRTV19	Kapillarrohrthermostat mit Knopf, IP44	165x57x60	

Elztrip EZ300

Wärmestrahler mit drei Heizpaneelen für Lagerhallen, Werkhallen etc.

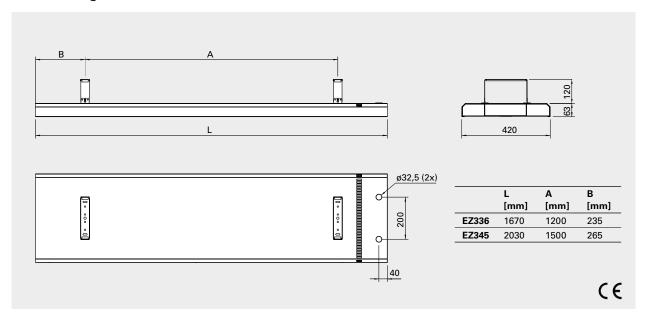

EZ300 wurde für vollständiges und zusätzliches Heizen in industriellen Umgebungen wie Lagerhallen, Werkhallen etc. entwickelt. EZ300 ist ein Wärmestrahler mit drei Heizpaneelen mit diskretem, robustem Design, das sieh gut in die Elektroinstallationen einfügt.

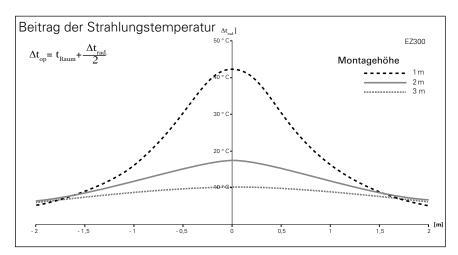
- Die Komponenten sind integriert und die Oberfläche ist so strukturiert, dass ein optimaler Wirkungsgrad erzielt wird.
- Die Wärmestrahler sind für eine Reihenschaltung geeignet.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, muss das Gerät entweder mit dem Thermostat TAP16R oder dem Leistungsregler RB123 und dem Präsenzmelder PDK65 (Zubehör) installiert werden.
- Standardhalterungen zur Installation inklusive.
- Rostfreies Gehäuse aus grauen, aluzinkbeschichtete Stahlpanelen. Heizpaneele aus natürlich anodisiertem Aluminium.


Elztrip EZ300 (IP44)

Тур	Heizleistung	Spannung	Stromstärke	Max. Oberflächen- temperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
EZ336	3600	230V3~/400V3N~	9,0/5,2	320	1670x63x420	19,8
EZ345	4500	230V3~/400V3N~	11,3/6,5	320	2030x63x420	24,2

Montagehöhe




Mindestabstand

Alle Änderungen vorbehalten!

Abmessungen

EZ300 gibt sofort Wärme ab, ein Vorheizen ist nicht nötig. Daher eignet sich das Gerät besonders für Gebäude, die nur in unregelmäßigen Abständen genutzt werden.

Wärmestrahler eigenen sich besonders für Räume mit hohen Decken, da es zu keinem Wärmeverlust zwischen Wärmestrahler und Fußboden kommt.

Positionierung, Montage und Installation

Aufstellung

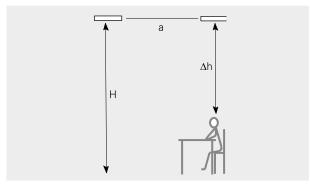
Faustregel zur Berechnung der Anzahl Wärmestrahler, die man zum Beheizen eines bestimmten Bereiches benötigt:

Mindestanzahl = Fläche der Räumlichkeiten [m²] von Strahlern Installationshöhe [m] × Installationshöhe [m]

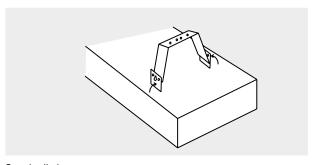
Diese Formel vereinfacht eine erste Schätzung der Mindestanzahl Wärmestrahler, die benötigt werden, um ein angenehmes Raumklima aufrechtzuerhalten. Um die benötigte Leistung pro Wärmestrahler zu errechnen, muss zuerst der Gesamtleistungsbedarf berechnet werden, siehe Technisches Handbuch.

Bei der Planung der Elztrip-Installation sollte man beachten, dass der Abstand zwischen den Wärmestrahlern nicht größer sein darf als der Abstand zwischen Wärmestrahler und Fußboden, d. h. "a" sollte kürzer sein als "H" (siehe Abb.). In Räumen, die nicht oft genutzt werden, sind die Anforderungen an den Komfort gewöhnlich geringer und der Abstand zwischen den Wärmestrahlern kann vergrößert werden. In Räumen, die regelmäßig genutzt werden, sollte der Abstand zwischen einer sitzenden Person und dem Wärmestrahler mindestens 1,5 bis 2 m (Δh) betragen. Wenn diese beiden Richtlinien befolgt werden, wird die maximale Temperatur
differenz im Betrieb Δt_{op} = 5 °C das Wohlbefinden nicht beeinträchtigen. Das heißt, die Differenz zwischen tatsächlicher und gefühlter Temperatur beträgt nicht mehr als 5 °C.

Montage


Elztrip wird horizontal an Decken, in Ankerschienen, an Kabeln, hängend usw. installiert. Standardhalterungen zur Installation inklusive. Wird der Strahler mit Drahtseilen aufgehängt, sollten die vier Montagepunkte am Strahler verwendet werden. Die Standardhalterungen für die Montage sind im Lieferumfang enthalten. Bei der Montage an Drähten müssen geeignete Klammern eingesetzt werden, die verhindern, dass das Gerät rutscht.

Installation


Elztrip ist für eine feste Installation vorgesehen. Die Wärmestrahler sind für eine Reihenschaltung geeignet.

Wärmestrahler geben die Wärme an Oberflächen wie Personen, Böden und Einbauten ab. So wird auch in Räumen mit großem Volumen ein angenehmes Raumklima erreicht.

Empfohlener Abstand für Elztrip

Standardhalterung

Richtet die Wärme genau dahin, wo sie benötigt wird.

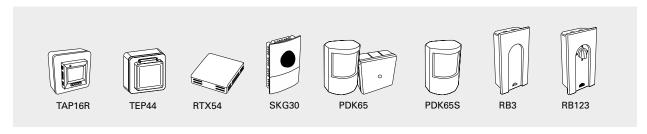
Regelungsoptionen

Der Strahler muss mit einer der folgenden Steuerungsoptionen ergänzt werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". Bei der Verwendung von TAP16R wird Schutzart IP44 erreicht durch das Hinzufügen eines Schutzgehäuses TEP44 und eines externen Temperaturfühlers RTX54, der den internen Fühler ersetzt. Bitte beachen Sie, dass außerdem eine RB-Relaisbox erforderlich ist.

Regelung über Thermostat

- TAP16R, Elektronischer Thermostat
- RB3, Relaisbox 400 V 3 N~/230V3~

Regelung durch Thermostat und Schwarz-Kugel-Sensor


- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor
- RB3, Relaisbox 400 V 3 N~/230V3~

Regelung mithilfe eines 3-stufigen Leistungsreglers und Präsenzmelder

- RB123, Relaisbox mit 3-stufigem Leistungsregler
- PDK65, Präsenzmelder mit Stromversorgung

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler und Zubehör

Тур	Beschreibung	HxBxT	
		[mm]	
TAP16R	ElektronischerThermostat, 16A, IP21	87x87x53	
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55	
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10KΩ, IP54	82x88x25	
SKG30	Schwarz-Kugel-Sensor, NTC 10 KΩ, IP30	115x85x40	
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max. 2,3 kW, IP42/IP65	102x70x50 88x88x39	
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42	102x70x50	
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44	155x87x43	
RB123	Relaisbox mit 3-stufigem Leistungsregler, 400 V 3 N~, 16 A, IP44	155x87x43	

Steuerungen für Installationen, die nicht unter die Ökodesign-Verordnung (EU) 2015/1188 fallen

Wenn der Strahler für technische Heizzwecke und nicht als Einzelraumheizgerät verwendet wird, können die folgenden Regelungen verwendet werden.

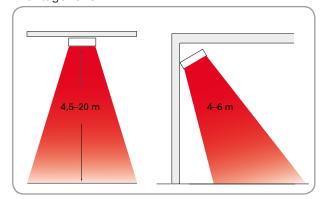
Тур	Beschreibung	HxBxT [mm]	
KRT1900	Raum-Kapillarrohrthermostat, IP55	165x57x60	
KRTV19	Kapillarrohrthermostat mit Knopf, IP44	165x57x60	
S123	Manueller Schalter für Stufen 1-2-3, 20A, IP42	72x64x46	

Industrie-Infrarotstrahler IR

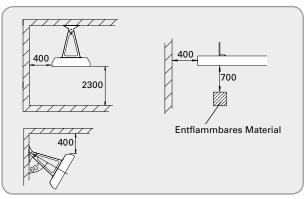
Für große Gebäude mit hohen Decken

IR-Wärmestrahler sind für das Voll- oder Zusatzheizen von Räumen mit großem Volumen und hohen Decken geeignet. Diese Strahler können auch im Freien eingesetzt werden, z. B. auf Sporttribünen oder Laderampen, um diese trocken und frostfrei zu halten.

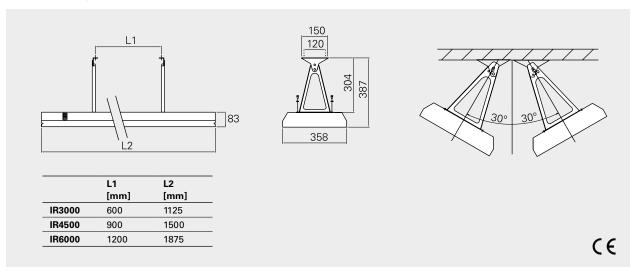
IR hat ein robustes Industrie-Design.

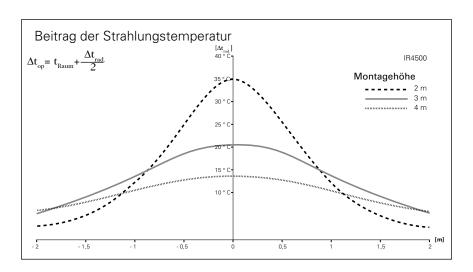

- Reflektoren aus glänzendem, eloxiertem Aluminium für eine optimale Wärmeverteilung.
- Mit den Montagekonsolen können fünf verschiedene Neigungen eingestellt werden.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, muss das Gerät entweder mit dem Thermostat TAP16R oder dem Leistungsregler RB123 und dem Präsenzmelder PDK65 (Zubehör) installiert werden.
- Eine Anschlussleiste ermöglicht die Reihenmontage mehrerer Heizstrahler oder den Anschluss eines Reglers.
- Ein Schutzgitter ist als Zubehör erhältlich.
- Rostfreies Gehäuse aus grauen, aluzinkbeschichtete Stahlpanelen.

Industrie-Infrarotstrahler IR (IP44)


			temperatur	LxHxW	
[kW]	[V] [A]	[°C]	[mm]	[kg]	
1/2/3	400V3N~*	4,3	700	1125x83x358	9,0
1,5/3/4,5	400V3N~*	6,5	700	1500x83x358	11,1
2/4/6	400V3N~*	8,7	700	1875x83x358	13,2
	1,5/3/4,5	1,5/3/4,5 400V3N~*	1,5/3/4,5 400V3N~* 6,5	1,5/3/4,5 400V3N~* 6,5 700	1,5/3/4,5 400V3N~* 6,5 700 1500x83x358

^{*)} Kann auch an 400 V3~ angeschlossen werden, dann aber ohne Leistungsstufen. Mit Nulleiter kann jeweils ein Element angeschlossen werden.


Montagehöhe



Mindestabstand

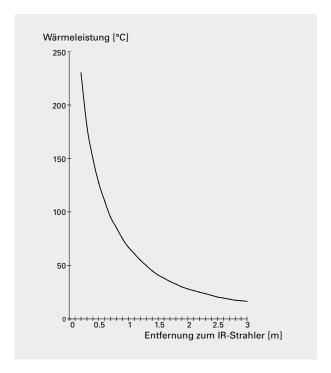
Alle Änderungen vorbehalten!

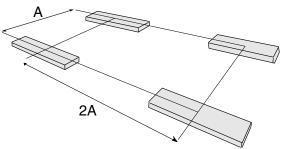
Der IR-Wärmestrahler kann in unterschiedlichen Winkeln montiert werden, um die Wärme dorthin zu richten, wo sie benötigt wird. Außenheizungen sollten unter dem Dach platziert werden.

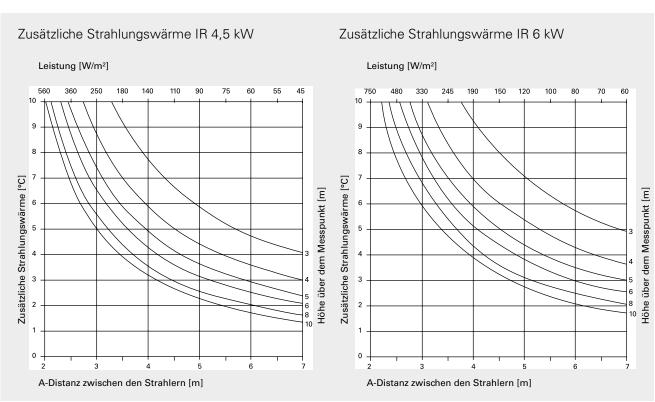
Große Hallen in unterschiedliche Wärmezonen zu unterteilen, ist eine sehr energiesparende Methode, besonders wenn bestimmte Bereiche nur gelegentlich genutzt werden. Das als Zubehör lieferbare Schutzgitter IRG schützt den Wärmestrahler zum Beispiel in Sport-Centern.

Positionierung, Montage und Installation

Aufstellung


Beim punktuellen Heizen ist der IR-Strahler so zu positionieren, dass die Wärme die Personen von vorn und von hinten erreicht. Der Abstand zum Kopf sollte nicht weniger als 2 m betragen. Weitere Informationen finden Sie im Technischen Handbuch.


Montage


Der Infrarot-Industriestrahler IR wird horizontal mit Montagehalterungen befestigt, die direkt an der Decke oder Wand installiert werden können. Die Halterung ermöglicht, den Abstrahlwinkel um bis zu 30 Grad in jeder Richtung zu variieren. Die Strahler können ebenfalls an Seilen abgehängt werden (Minimum Ø 3 mm). Ein Schutzgitter ist als Zubehör erhältlich.

Installation

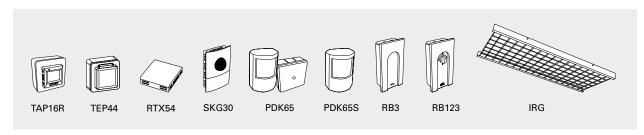
Der Infrarot-Industriestrahler IR ist für eine feste Installation vorgesehen. Im Anschlusskasten befinden sich Doppelanschlusssockel, mit denen sich Anschlüsse zwischen weiteren Strahlern vornehmen lassen. Wärmeleistung direkt unter dem Gerät IR 4,5 - 6 kW

Der Strahler muss mit einer der folgenden Steuerungsoptionen ergänzt werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen". Bei der Verwendung von TAP16R wird Schutzart IP44 erreicht durch das Hinzufügen eines Schutzgehäuses TEP44 und eines externen Temperaturfühlers RTX54, der den internen Fühler ersetzt. Bitte beachen Sie, dass außerdem eine RB-Relaisbox erforderlich ist.

Regelung über Thermostat

- TAP16R, Elektronischer Thermostat
- RB3, Relaisbox 400 V 3 N~/400V3~

Regelung durch Thermostat und Schwarz-Kugel-Sensor


- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor
- RB3, Relaisbox 400 V 3 N~/400V3~

Regelung mithilfe eines 3-stufigen Leistungsreglers und Präsenzmelder

- RB123, Relaisbox mit 3-stufigem Leistungsregler
- PDK65, Präsenzmelder mit Stromversorgung

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler und Zubehör

Тур	Beschreibung	HxBxT
		[mm]
TAP16R	ElektronischerThermostat, 16A, IP21	87x87x53
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10KΩ, IP54	82x88x25
SKG30	Schwarz-Kugel-Sensor, NTC 10 K Ω , IP30	115x85x40
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max. 2,3 kW, IP42/IP65	102x70x50 88x88x39
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42	102x70x50
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44	155x87x43
RB123	Relaisbox mit 3-stufigem Leistungsregler, 400 V 3 N~, 16 A, IP44	155x87x43
IRG3000	Schutzgitter für IR3000	869x362x40
IRG4500	Schutzgitter für IR4500	1235x362x40
IRG6000	Schutzgitter für IR6000	1615x362x40

Steuerungen für Installationen, die nicht unter die Ökodesign-Verordnung (EU) 2015/1188 fallen

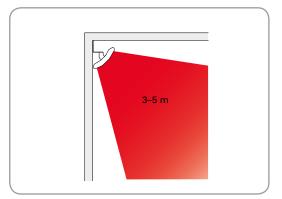
Wenn der Strahler für technische Heizzwecke und nicht als Einzelraumheizgerät verwendet wird, können die folgenden Regelungen verwendet werden.

Тур	Beschreibung	HxBxT [mm]
KRT1900	Raum-Kapillarrohrthermostat, IP55	165x57x60
KRTV19	Kapillarrohrthermostat mit Knopf, IP44	165x57x60
S123	Manueller Schalter für Stufen 1-2-3, 20A, IP42	72x64x46

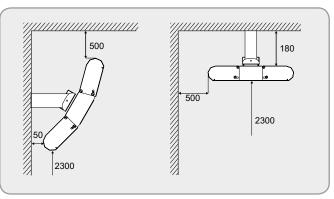
Infrarotstrahler IRCF

Für die Punktheizung großer Räume

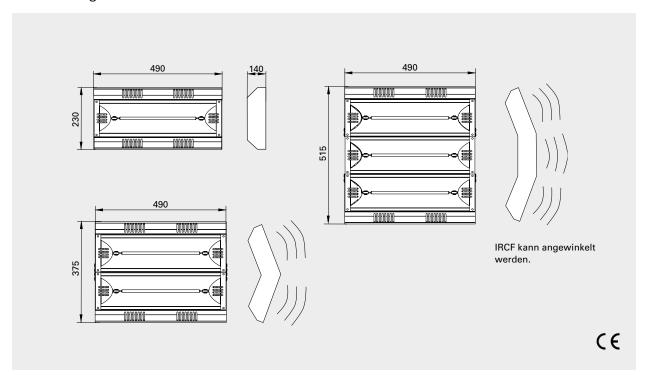
Der Infrarotstrahler IRCF ist besonders für das Punktheizen in Räumen mit großem Luftvolumen, wie Kirchen, Flugzeughangars und Zelten, geeignet. Dank seiner hohen Effizienz und kompakten Größe ist er für viele schwierige Anwendungen wie geschaffen.


IRCF hat ein unauffälliges und kompaktes Design mit glänzenden Reflektoren. Flexible Größe mit einer bis drei Lampen.

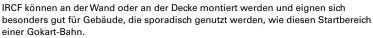
- Ausgerüstet mit bis zu drei Halogenlampen sowie mit Reflektoren mit glänzender Oberfläche.
- Einfache Wand- oder Deckenmontage mit Montagekonsole. Der Infrarotstrahler kann angewinkelt werden.
- Schutzgitter als Zubehör erhältlich.
- Um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen, muss das Gerät entweder mit dem Thermostat TAP16R oder dem Leistungsregler RB123 und dem Präsenzmelder PDK65 (Zubehör) installiert werden.
- Korrosionsbeständiges Gehäuse aus Aluminium.
- Farbe: RAL 9006.


Infrarotstrahler IRCF (IP20)

Тур	Heizleistung	Spannung	Abmessungen LxHxT	Anzahl der Lampen	Gewicht
	[W]	[V]	[mm]		[kg]
IRCF1500	1500	230 V~	490x230x140	1	1,7
IRCF3000	3000	230 V~	490x375x140	2	2,4
IRCF4500	4500	230 V~/400 V3~	490x515x140	3	3,0


Montagehöhe

Mindestabstand

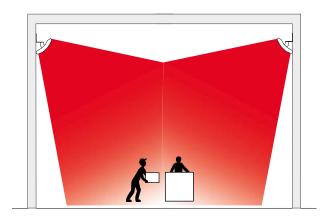


Alle Änderungen vorbehalten!

IRCF werden oft in großen Lagerhäusern installiert, da sie für schnelle, effektive und kostengünstige Wärme sorgen.

Positionierung, Montage und Installation

Aufstellung

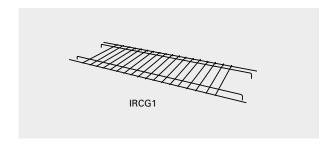

Für die Heizung einer Werkstatt können zwei Strahler verwendet werden, die gegenüberliegend montiert werden, so dass sich die Wärmestrahlen kreuzen.

Montage

Der ICRF wird horizontal an der Decke oder mit der mitgelieferten Halterung an der Wand befestigt. Der IRCF lässt sich beispielsweise von Ketten hängend aufhängen. Der Winkel des wärmestrahlers kann für optimale Leistung angepasst werden. Ein Schutzgitter ist als Zubehör erhältlich.

Installation

Der IRCF-Wärmestrahler ist für eine feste Installation vorgesehen.


Zubehör

LIRCF, Ersatzlampe

Die Halogenlampen mit $1,5~\rm kW$ sind austauschbar und haben bei normaler Nutzung eine Lebensdauer etwa $5000~\rm Stunden$.

IRCG1, Schutzgitter für IRCF

Gitter zum Schutz des IRCF in ungeschützten Bereichen. Ein Gitter wird für IRCF1500 benötigt, während IRCF3000 zwei Gitter und IRCF4500 drei Gitter benötigt.

Тур	Beschreibung	HxBxT [mm]
LIRCF	Ersatzlampe	
IRCG1	Schutzgitter für IRCF1500. Für IRCF3000 2 Stück, für IRCF4500 3 Stück erforderlich.	10x480x134

Das kleinste Modell von IRCF eignet sich optimal für komplizierte Einsatzbereiche wie Kirchen.

Der Strahler muss mit einer der folgenden Steuerungsoptionen ergänzt werden. Das TAP16R verfügt über einen adaptiven Start, ein Wochenprogramm und den Modus "Fenster offen".

IRCF1500 / IRCF3000

Regelung über Thermostat

- TAP16R, Elektronischer Thermostat
- RB3, Relaisbox (IRCF3000)

Regelung durch Thermostat und Schwarz-Kugel-Sensor

- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor
- RB3, Relaisbox (IRCF3000)

Regelung durch Thermostat und Präsenzmelder

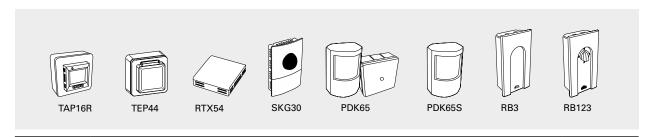
- TAP16R, Elektronischer Thermostat
- PDK65, Präsenzmelder mit Stromversorgung
- RB3, Relaisbox (IRCF3000)

IRCF4500

Regelung über Thermostat

- TAP16R, Elektronischer Thermostat
- RB3, Relaisbox

Regelung durch Thermostat und Schwarz-Kugel-Sensor


- TAP16R, Elektronischer Thermostat
- SKG30, Schwarz-Kugel-Sensor
- RB3, Relaisbox

Regelung mithilfe eines 3-stufigen Leistungsreglers und Präsenzmelder

- RB123, Relaisbox mit 3-stufigem Leistungsregler
- PDK65, Präsenzmelder mit Stromversorgung

Das Produkt kann auf eine andere Weise gesteuert werden, z. B. durch ein Gesamtsteuerungssystem (BMS), solange die Installation den Anforderungen der Ökodesign-Verordnung entspricht.

Regler

Тур	Beschreibung	HxBxT
		[mm]
TAP16R	Elektronischer Thermostat, 16A, IP21	87x87x53
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.	87x87x55
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10KΩ, IP54	82x88x25
SKG30	Schwarz-Kugel-Sensor, NTC 10 KΩ, IP30	115x85x40
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max. 2,3 kW, IP42/IP65	102x70x50 88x88x39
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42	102x70x50
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44	155x87x43
RB123	Relaisbox mit 3-stufigem Leistungsregler, 400 V 3 N~, 16 A, IP44	155x87x43

Steuerungen für Installationen, die nicht unter die Ökodesign-Verordnung (EU) 2015/1188 fallen

Wenn der Strahler für technische Heizzwecke und nicht als Einzelraumheizgerät verwendet wird, können die folgenden Regelungen verwendet werden.

Тур	Beschreibung	HxBxT [mm]
KRT1900	Raum-Kapillarrohrthermostat, IP55	165x57x60
KRTV19	Kapillarrohrthermostat mit Knopf, IP44	165x57x60
S123	Manueller Schalter für Stufen 1-2-3, 20A, IP42	72x64x46

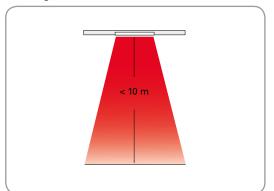
Aquaztrip Plan

Warmwasser-Wärmestrahlplatte für die Montage in Zwischendecken oder freihängend

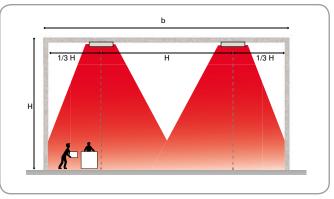
Aquaztrip Plan wird für Heizungs- oder bedingt auch Kühlsysteme mit Wasser eingesetzt. Es ist vorrangig für die frei hängende Montage oder für Zwischendeckenmontage ausgelegt und passt hervorragend in elegante Räume wie Büros, Geschäfte usw., es kann aber auch frei hängend installiert werden.

Die Größe der Platten ist dafür ausgelegt, 600 x 600 mm Zwischendeckenplatten zu ersetzen. Dank der geringen Installationsabmessungen passen sie in die meisten Zwischendecken.

Die Platten werden für eine schnelle Installation vollständig mit Isolierung und Aufhängungshalterungen bereitgestellt.

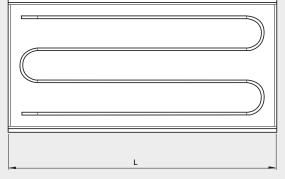

- Die Platten sind in Längen von bis zu 3 Metern erhältlich. Breite: 600 mm.
- Kleine Installationsabmessungen: 40 mm.
- Die Kupferrohre sind für eine maximale Wärmeübertragung mit Aluminiumplatten verschweißt.
- Die Rohrenden sind bei Lieferung nach oben gebogen.
- Die Oberseite der Platte ist mit Mineralwolle isoliert, die für eine einfache Reinigung mit Kunststoffpapier überzogen ist.
- Anpassbare Aufhängungshalterungen sind im Lieferumfang enthalten.
- Erfüllt EN14037.
- Wärmestrahlplatte aus pulverbeschichtetem Aluminium Farbe: weiß, RAL 9003. Andere Farben auf Anfrage.

Aquaztrip Plan


Тур	Heizleistung* ¹	Länge	Breite	Max. Betriebsdruck	Max. Betriebs- temperatur	Gewicht mit wasser	Gewicht ohne wasser
	[W/platte]	[mm]	[mm]	[bar]	[°C]	[kg]	[kg]
AZP612	184	1190	592	10	90	4,5	4,2
AZP618	276	1790	592	10	90	6,8	6,3
AZP624	409	2390	592	10	90	9,2	8,5
AZP630	511	2990	592	10	90	11,5	10,6

^{*)} Gilt für Wassertemperaturen von 60/40 °C, Raumtemperatur von +20 °C.

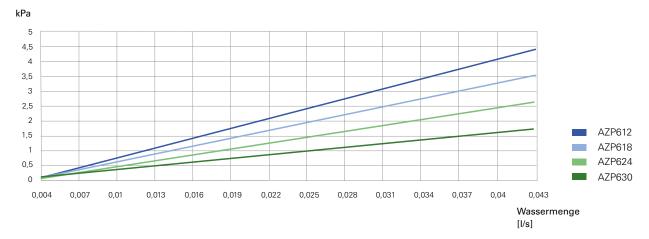
Montagehöhe


Abstand zwischen den Paneelen

2018-06-15

Platten mit einer Breite von 900 mm können speziell bestellt werden.

	L
	[mm]
AZP612	1190
AZP618	1790
AZP624	2390
AZP630	2990


Die Anschlüsse werden mit einfachen Rohrenden von Ø 12 mm hergestellt. Platten mit einem Rohrdurchmesser von 10 mm können speziell bestellt werden.

Druckverlust

Der Wasserstrom sollte stark sein, um sicherzustellen, dass ein turbulenter Strom in den Rohren entsteht. Empfohlener Mindeststrom: 0,02 l/s

Regelung

Für Regelung, siehe Aquaztrip Flex.

Wärmestrahler sind der perfekte Schutz vor Zugluft. Hier werden die Fenster durch einen hängenden Aquaztrip Plan mit schwarzer Oberfläche geschützt.

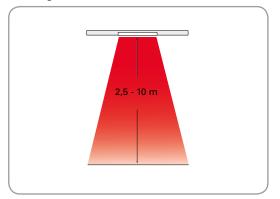
Durch das Strahlungsprinzip wird die Luft nicht direkt erwärmt. Dies gewährleistet ein angenehmes, zugluftfreies Raumklima mit gleichmäßigerTemperatur.

Aquaztrip Flex

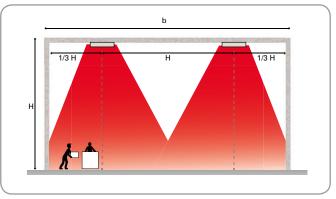
Flexibler Wärmestrahler mit Wasserheizung

Dank seines leichten und robusten Designs eignet sich Aquaztrip Flex ideal für Büros, Geschäfte, Schulen etc. Flexible Montage an der Decke, eingelassen oder hängend.

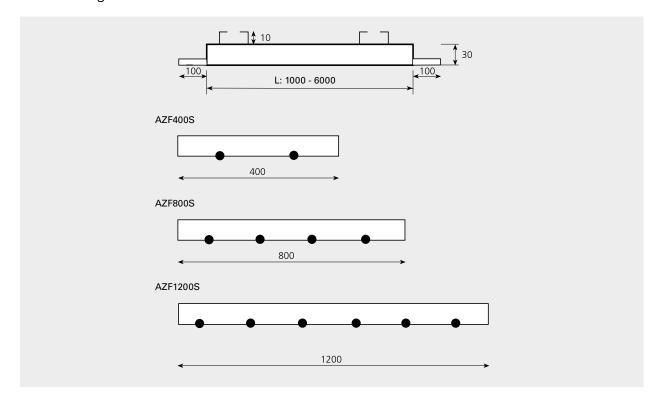
Aquaztrip Flex hat eine elegante, pulverbeschichtete weiße Oberfläche, die sich in die meisten Umgebungen optisch integrieren lässt. Abdeckplatten sind als eine Option für Umgebungen mit hohen optischen Ansprüchen verfügbar. Diese verbergen wirksam alle Rohrverbinder und verbinden außerdem die Platten auf ihrer Länge zu einer Einheit.


- Die Platten sind in Längen von 1 m bis zu 6 m in Stufen von 0,1 m und mit 3 verschiedenen Rohranschlussoptionen erhältlich. Die Längen können dann auf bis zu max. 25 m kombiniert werden.
- Erfüllt EN14037.
- Optimale Wärmeverteilung. Für einen bestmöglichen Kontakt sind die Kupferrohre von einer Wärmeleitpaste umgeben und werden gegen die Aluminiumplatte gedrückt, die wiederum mit Aluminiumband und 28 mm Polyurethanschaum abgedichtet werden.
- Komponenten für die hängende Montage sind als Option erhältlich.
- Wärmestrahlplatte aus pulverbeschichtetem Aluminium Farbe: weiß, RAL 9003. Andere Farben auf Anfrage.

Aquaztrip Flex

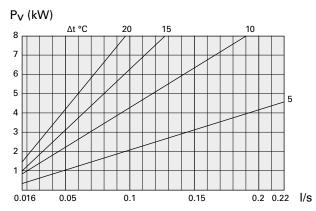

Тур	Heizleistung* ¹	Breite	Max. Betriebsdruck	Max. Betriebs- temperatur	Gewicht mit wasser	Gewicht ohne wasser
	[W/m]	[mm]	[bar]	[°C]	[kg/m]	[kg/m]
AZF400	113	400	600	80	3,5	2,6
AZF800	225	800	600	80	7,2	5,2
AZF1200	336	1200	600	80	10,8	7,8

^{*)} Gilt für Wassertemperaturen von 60/40 °C, Raumtemperatur von +20 °C.


Montagehöhe

Abstand zwischen den Paneelen

Alle Änderungen vorbehalten!

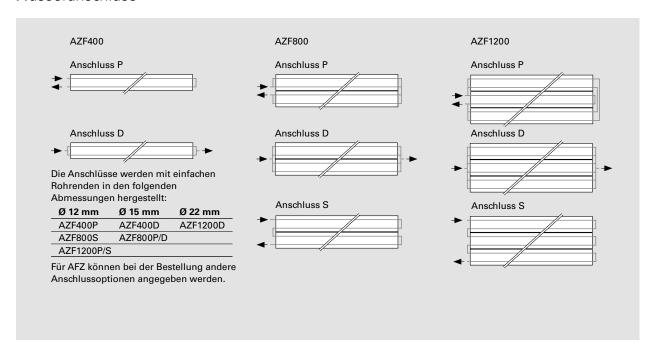


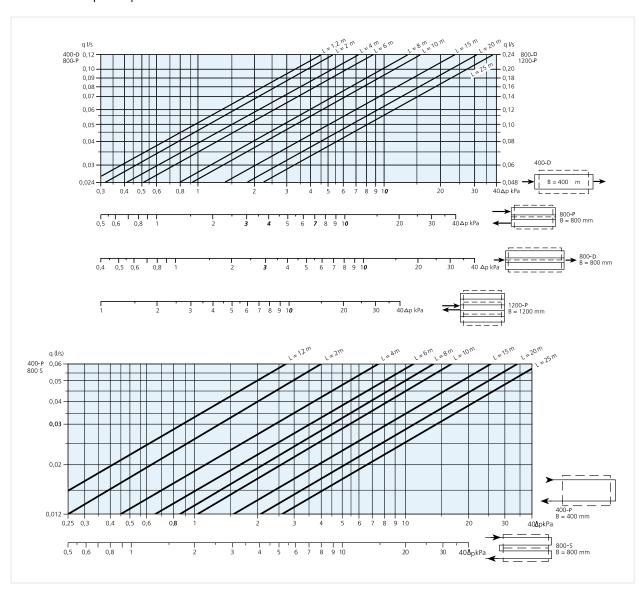
Heizleistung Pv (W/laufenden Meter) Die Leistung ist eine Funktion der Differenz zwischen der mittleren Temperatur des Wärmeträgers und der Raumtemperatur.

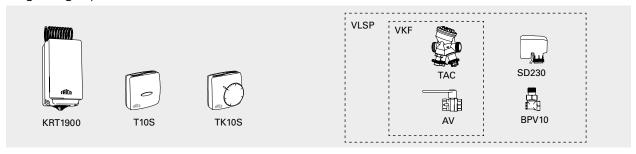
Тур	∆t _{mv} (°C)							
	25	30	35	40	45	50	55	60
AZF400	95	115	130	150	170	195	215	235
AZF800	190	225	260	300	340	390	425	465
AZF1200	285	335	375	450	510	585	635	700

Wassermenge

Der Wasserstrom ist eine Funktion der Heizleistung Pv und des Temperaturunterschieds im Wärmeträger. Δtv . Der Wasserstrom sollte stark sein, um sicherzustellen, dass ein turbulenter Strom in den Rohren entsteht. Empfohlener Mindeststrom: 0.02~l/s


Aquaztrip ist die perfekte Lösung für Räume mit hohen Decken.


Aquaztrip Flex ist sehr diskret, wenn er versenkt in Zwischendecken montiert wird, und fügt sich gut in eine elegante Umgebung ein.


Aquaztrip Flex

Wasseranschluss

Druckabfall pro Spule

T10S/TK10S, Thermostate

Prozessorgesteuerte Thermostate mit verdeckten und sichtbaren Knopf. Einstellbereich +5 bis +30°C. Schließerkontakt für Heizung oder Kühlung. Anschlussspannung: 230 V. Maximaler Abschaltstrom: 10 A. IP30.

KRT1900, Raum-Kapillarrohrthermostat Kapillarrohrthermostat mit verdecktem Drehschalter. Einstellbereich 0 bis +40°C. Maximaler Abschaltstrom: 16/10 A (230/400 V). IP55 VLSP, druckunabhängiges Ventilsystem an/aus Wird für die Regelung des Wasserflusses zu mit Wasser erwärmten Geräten verwendet. Druckunabhängiges Zwei-Wege-Regel- und Einregulierungsventil mit Ein/Aus-Stellantrieb, Absperrventil und Bypass. DN15/20/25/32. 230V.

Das Ventilsystem VLSP umfasst Folgendes:

- VKF, Ventilsatz
 - TAC, druckunabhängiges Regel- und Einregulierungsventil
 - AV, Absperrventil
- SD230, Stellantrieb Ein/Aus 230 V
- BPV10, Bypass-Ventil

Тур	Beschreibung
T10S	ElektronischerThermostat, IP30
TK10S	ElektronischerThermostat mit Knopf, IP30
KRT1900	Raum-Kapillarrohrthermostat, IP55

Für ein geeignetes Kontrollgerät wenden Sie sich bitte an Frico.

Тур	DN	Durchflussbereich [I/s]	
VLSP15LF	DN15	0,012 - 0,068	
VLSP15NF	DN15	0,024 - 0,131	
VLSP20	DN20	0,058 - 0,319	
VLSP25	DN25	0,103 - 0,597	
VLSP32	DN32	0,222 - 1,028	

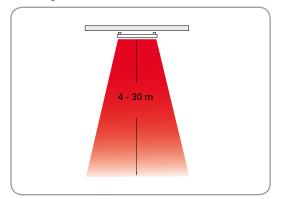
Aquaztrip kann sowohl für die Vollheizung als auch die Zonenbeheizung verwendet werden. Dies ist sowohl praktisch als auch energiesparend in Werkshallen.

Aquaztrip Comfort

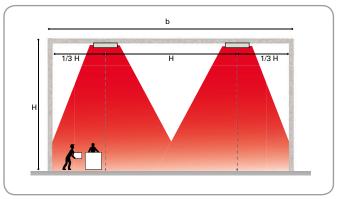
Leistungsstarker Wärmestrahler für sehr hohe Installationshöhen

Dank seiner belastbaren Bauweise und der Option, Paneele auf einer Länge von bis zu 125 m zu verbinden, eignet sich Aquazip Comfort ideal für Sporthallen, Ankunftshallen, Warenhäuser und Industrieanlagen sowie Werkstätten.

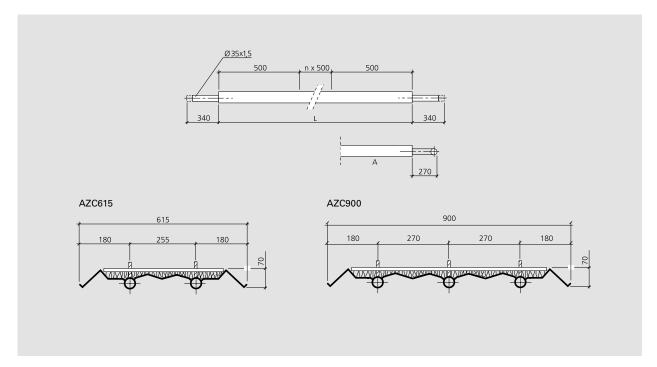
Aquaztrip kann die Kosten um bis zu 25 % im Vergleich zu traditionellen Heizsystemen senken, insbesondere in Gebäuden mit schlechter Isolierung, hohen Decken und unregelmäßiger Verwendung.


- Die Platten sind auf einer Länge von bis zu ca. 125 Metern miteinander verbunden. Die einzelnen Platten sind max. 6 Meter lang.
- Konvektionsschutz enthalten.
- Erfüllt EN14037.
- Die Wärmestrahlplatte besteht aus Aluminiumblech, das um die Wasserrohre gerollt ist, um so für einen optimalen Kontakt und eine optimale Energieverteilung zu sorgen.
- Die Oberseite der Platte ist mit Mineralwolle isoliert, die für eine einfache Reinigung mit Kunststoffpapier überzogen ist.
- Wärmestrahlplatte aus lackiertem Aluminium. Farbe: Hellgrau, NCS S 3500 N. Andere Farben auf Anfrage.

Aquaztrip Comfort


Тур	Heizleistung*1	Breite	Max. Betriebsdruck	Max. Betriebs- temperatur	Gewicht mit wasser	Gewicht ohne wasser
	[W/m]	[mm]	[bar]	[°C]	[kg/m]	[kg/m]
AZC615	154	615	600	90	7,2	5,2
AZC900	237	900	600	90	10,8	7,8

^{*)} Gilt für Wassertemperaturen von 60/40 °C, Raumtemperatur von +18 °C.


Montagehöhe

Abstand zwischen den Paneelen

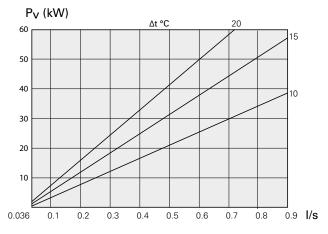
Alle Änderungen vorbehalten!

Heizleistung Pv (W/laufenden Meter) Die Leistung ist eine Funktion der Differenz zwischen der mittleren Temperatur des Wärmeträgers und der Raumtemperatur.

Тур				Δt _m	, (°C)			
	25	30	35	40	45	50	55	60
AZC615	114	142	171	200	231	261	293	325
AZC900	176	219	263	309	355	403	451	500

Wassermenge

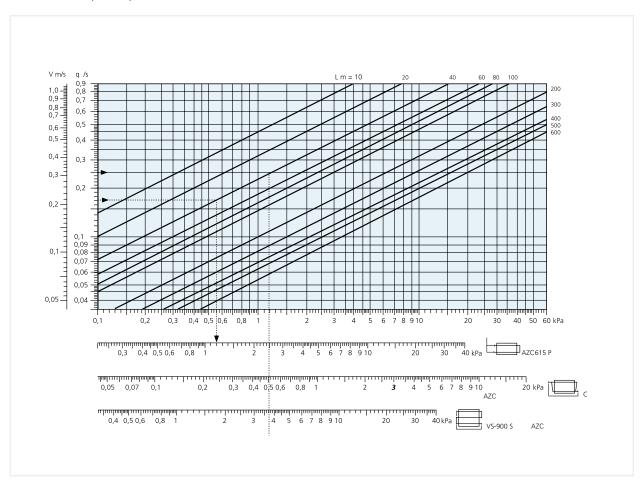
Der Wasserstrom ist eine Funktion der Heizleistung Pv und des Temperaturunterschieds im Wärmeträger. Δtv . Der Wasserstrom sollte stark sein, um sicherzustellen, dass ein turbulenter Strom in den Rohren entsteht.


Empfohlener Mindeststrom[I/s]

Anschluss	AZC615	AZC900
P	0,036	0,072
D	0,072	0,108
S	-	0,036

Für Kupplungen P, D und S siehe folgende Seite.

Aquaztrip wird direkt über den Bereichen installiert, in denen die Wärme benötigt wird. Der Wärmeverlust durch die Umgebungsluft ist minimal. Dadurch werden die Heizkosten entschieden gesenkt.



Aquaztrip Comfort

Wasseranschluss

Druckabfall pro Spule

T10S/TK10S, Thermostate

Prozessorgesteuerte Thermostate mit verdeckten und sichtbaren Knopf. Einstellbereich +5 bis +30°C. Schließerkontakt für Heizung oder Kühlung. Anschlussspannung: 230 V. Maximaler Abschaltstrom: 10 A. IP30.

KRT1900, Raum-Kapillarrohrthermostat Kapillarrohrthermostat mit verdecktem Drehschalter. Einstellbereich 0 bis +40°C. Maximaler Abschaltstrom: 16/10 A (230/400 V). IP55 VLSP, druckunabhängiges Ventilsystem an/aus Wird für die Regelung des Wasserflusses zu mit Wasser erwärmten Geräten verwendet. Druckunabhängiges Zwei-Wege-Regel- und Einregulierungsventil mit Ein/Aus-Stellantrieb, Absperrventil und Bypass. DN15/20/25/32. 230V.

Das Ventilsystem VLSP umfasst Folgendes:

- VKF, Ventilsatz
 - TAC, druckunabhängiges Regel- und Einregulierungsventil
 - AV, Absperrventil
- SD230, Stellantrieb Ein/Aus 230 V
- BPV10, Bypass-Ventil

Тур	Beschreibung
T10S	ElektronischerThermostat, IP30
TK10S	ElektronischerThermostat mit Knopf, IP30
KRT1900	Raum-Kapillarrohrthermostat, IP55

Für ein geeignetes Kontrollgerät wenden Sie sich bitte an Frico.

Тур	DN	Durchflussbereich [I/s]	
VLSP15LF	DN15	0,012 - 0,068	
VLSP15NF	DN15	0,024 - 0,131	
VLSP20	DN20	0,058 - 0,319	
VLSP25	DN25	0,103 - 0,597	
VLSP32	DN32	0,222 - 1,028	

Aquaztrip kann in schwierig zu erreichenden Bereichen installiert werden, da die Module keine beweglichen Teile enthalten, die ständiger Wartung bedürfen.

Infrarotstrahler CIR

CIR bietet das ganze Jahr über Komfort auf der Terrasse, dem Balkon oder in Freiluftrestaurants an. Der CIR glüht nicht und ist daher die perfekte Wahl, wenn Sie eine diskrete Lösung wünschen.

Carbon-Infrarotstrahler IHC

Der Karbon-Infrarotstrahler IHC erzeugt eine sanfte und direkte Wärme, die zusammen mit dem schwachen Lichtschein ideal für Außenrestaurants, bei denen Design wichtig ist.

Infrarot-Halogen IH

Der Halogeninfrarotstrahler IH ist ein leistungsstarker Wärmestrahler mit einer Glühfadentemperatur von 2200 °C, der sich perfekt für ungeschützte Außenbereiche eignet, bei denen das Design eine Rolle spielt. Der IH lässt sich ebenfalls als lokale Heizlösung in größeren Objekten einsetzen.

Infrarotstrahler ELIR

ELIR erzeugt eine intensive Wärme und eignet sich für alle Außenanwendungen. ELIR ist leicht, stabil und tragbar, eignet sich aber auch gut für eine vorübergehende Heizung von Baustellen und Veranstaltungen.

Infrarotstrahler CIR

Unauffälliges Design und diskreter Betrieb in vielen Anwendungsbereichen

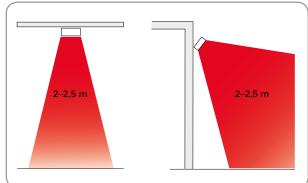
Der CIR-Strahler bietet das ganze Jahr über Komfort für Terrassen, Balkone und Freiluftrestaurants. Diese Wärmestrahler benötigen keinen Wetterschutz (5 Jahre Garantie gegen Korrosion).

Mit seinem schlanken Design und dem leisen, unauffälligen Betrieb sowie seinem geringen Platzbedarf wirkt der CIR-Strahler äußerst diskret.

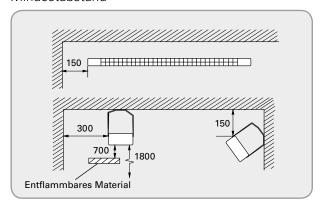
- Der Infrarotstrahler CIR ist in zwei Ausführungen lieferbar:
 - CIR100, mit Leistungen von 500 bis 2000 W.
 - CIR200, mit derselben Leistung und eingebautem Schalter.
 - CIRC, mit 1000 W Leistung. 1,8 m Kabel und Stecker.
- Reflektoren aus hochglanzpoliertem Aluminium mit maximaler Korrosionsbeständigkeit. Graue Anschlusskästen aus wärme- und witterungsbeständigem Polykarbonat.
- Verstellbare Montagekonsolen für eine einfache Wand- oder Deckenmontage.
- Gehäuse aus weiß lackiertem Aluminiumzinkblech Farbe: RAL 9002, NCS 1502-Y. Schutzgitter aus rostfreiem.

Infrarotstrahler CIR ohne Einbauschalter (IP24)

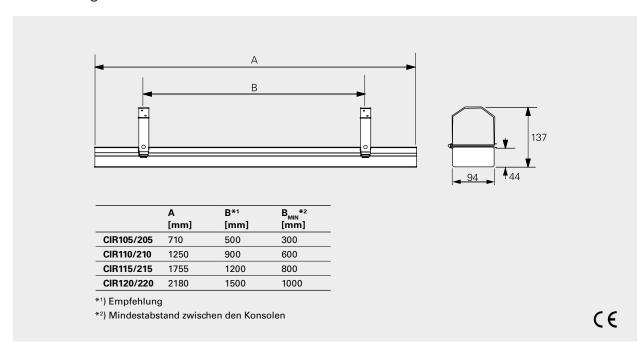
Тур	Heizleistung	Spannung	Stromstärke	Max. Element- temperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
CIR10521	500	230V~	2,2	750	710x44x94	1,5
CIR11021	1000	230V~	4,3	750	1250x44x94	2,2
CIR11031	1000	400V2~	2,5	750	1250x44x94	2,2
CIR11521	1500	230V~	6,5	750	1755x44x94	3,0
CIR11531	1500	400V2~	3,8	750	1755x44x94	3,0
CIR12021	2000	230V~	8,7	750	2180x44x94	3,7
CIR12031	2000	400V2~	5,0	750	2180x44x94	3,7

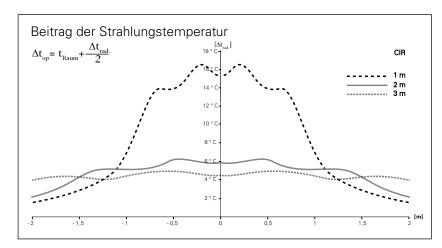

Infrarotstrahler CIR mit Einbauschalter (IP24)

Тур	Heizleistung	Spannung	Stromstärke	Max. Element- temperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
CIR20521	500	230V~	2,2	750	710x44x94	1,5
CIR21021	1000	230V~	4,3	750	1250x44x94	2,2
CIR21031	1000	400V2~	2,5	750	1250x44x94	2,2
CIR21531	1500	400V2~	3,8	750	1755x44x94	3,0
CIR22031	2000	400V2~	5,0	750	2180x44x94	3,7


CIRC-Infrarot-Strahler mit 1,8 m Kabel und Stecker (IP24)

Тур	Heizleistung	Spannung	Stromstärke	Max. Element- temperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
CIR11021C	1000	230V~	4,3	750	1250x44x94	2,2


Montagehöhe



Mindestabstand

Abmessungen

Mit seinem schlanken Design passt der CIR-Strahler überall. Für eine gleichmäßige Wärmeleistung sollten die Strahler aus mindestens zwei Richtungen heizen.

Positionierung, Montage und Installation

Aufstellung

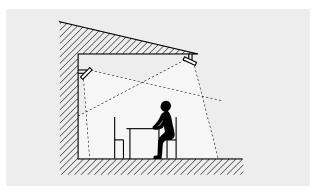
Die Infrarot-Strahler werden um die zu beheizende Fläche herum montiert (siehe Abbildung 1 und 2). Die Geräte werden normalerweise etwa 2 bis 2,5 Meter über dem Boden positioniert. Grundsätzlich erhöhen 750-1000 W/m² die Temperatur um etwa 10 °C bei Infrarot-Strahlern, die mit rohrförmigen Metallelementen ausgestattet sind. Die Ausgangsleistung kann reduziert werden, wenn die zu beheizende Fläche eingefasst ist. Wenn die Fläche lediglich überdacht ist, sollte für mindestens 1000 W/m² gesorgt werden. 750 W/m² sind ausreichend, wenn die Fläche von drei Wänden umgeben ist. Für vollständig eingefasst Flächen muss der Heizbedarf berechnet werden. Ein Wintergarten erfordert ca. 250-300 W/m². Durch die Wärmeverteilung aus zwei Richtungen erzielt man einen optimalen Komfort.

iber otert Beispiel für eine gute

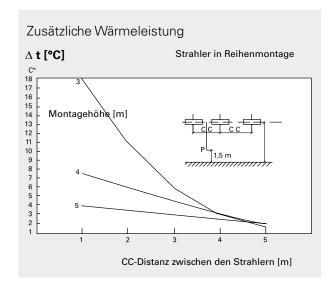
500 W

Beispiel für eine gute Platzierung, von oben gesehen, Leistungsbedarf ca. 1000 W/m².

1000W


1000W

Montage


Der CIR wird horizontal an der Decke oder mit den mitgelieferten justierbaren Montagehalterungen an der Wand befestigt. Der Winkel des wärmestrahlers kann für optimale Leistung angepasst werden. Die Standardhalterungen eigenen sich nicht für eine abgewinkelte Installation an der Decke, da der Abstand dann unter dem Mindestabstand liegt. Zudem lässt sich der CIR mit Drahtseilenbefestigungen abhängen.

Installation

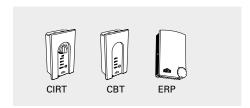
Der CIR11021C ist mit einem 1,8 m langen Kabel mit Stecker versehen und wird an eine geerdete Netzsteckdose angeschlossen. Die anderen Modelle sind für feste Installationen vorgesehen. Die Wärmestrahler sind für eine Reihenschaltung geeignet.

Für eine gleichmäßige Wärmeleistung sollten die Strahler aus mindestens zwei Richtungen heizen.

Wärmestrahler sind die perfekte Lösung für die Verwendung im Freien, da sie Menschen und Objekte direkt wärmen, nicht die Umgebungsluft.

Leistungsregelung mit Schaltuhr Stufenlose Regelung, besonders geeignet zum Punktund Flächenheizen. Die Heizleistung kann komfortabel nach Wunsch angepasst werden. Die integrierte Schaltuhr kann auf die gewünschte Zeit eingestellt werden.

• CIRT, stufenloser Leistungsregler mit Schaltuhr


Steuerung mit Schaltuhr

Die Schaltuhr kann auf die gewünschte Zeit eingestellt werden. Falls die Last den Einstellbereich der Schaltuhr überfordert oder wenn ein größeres System gesteuert werden soll, kann ein Schütz verwendet werden.

• Elektronische Schaltuhr CBT

Neben diesen Regelungsmöglichkeiten kann der Elektroheizungsregler ERP eingesetzt werden, um die Leistung im Innenbereich oder in vollständig verglasten Räumen zu begrenzen.

Regler

Тур	Beschreibung	HxBxT [mm]
CIRT	Stufenlose Leistungsregelung, IP44	155x87x43
CBT	Elektronische Schaltuhr, IP44	155x87x43
ERP	Elektroheizungsregler, IP20	157x93x40

Regelgeräte für CIR 1500 W und 2000 W bei einer Verwendung im Gebäude

Der Infrarotstrahler CIR kann auch vorübergehend im Gebäude als Zusatzheizung verwendet werden. Beachten Sie jedoch, dass die Modelle 1500 W und 2000 W mit dem Thermostat TAP16R (Zubehör) installiert werden müssen, um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen. Modelle mit weniger als 1200 W können jedoch im Gebäude mit denselben Kontrollgeräten verwendet werden, die auch im Freien verwendet werden. (CIR 500W, 1000W). Siehe oben.

Тур	Beschreibung
TAP16R	Elektronischer Thermostat, 16A, IP21
TEP44	Schutzgehäuse für TAP16R, IP44. Muss um RTX54 ergänzt werden.
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10K Ω , IP54
SKG30	Schwarz-Kugel-Sensor, NTC 10 KΩ, IP30
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max. 2,3 kW, IP42/IP65
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44

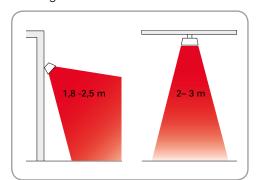
Weitere Informationen finden Sie im Abschnitt "Regler".

CIR-Strahler sind die ideale Komfort-Lösung für den Außenbereich von Restaurants. Die Heizungen können an der Wand des Restaurants oder in Reihe direkt über den Tischen großer Terrassen installiert werden.

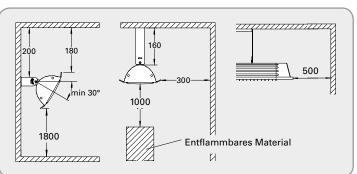
Carbon-Infrarotstrahler IHC

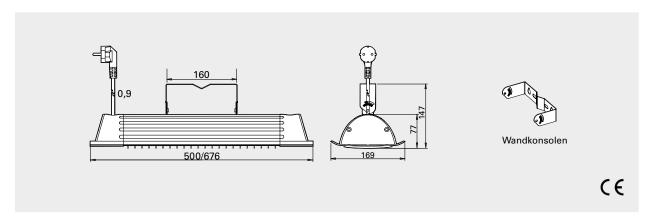
Für eine sanfte, aber intensive Wärme

Der Karbon-Infrarotstrahler IHC erzeugt eine sanfte und direkte Wärme, die zusammen mit dem schwachen Lichtschein ideal für Außenrestaurants, bei denen Design wichtig ist. Durch seine Wärmeverteilung eignet sich der IHC besonders gut für die etwas höher gelegene, nahe Installation.


Dank des kompakten Designs ist die Montage des IHC-Strahlers sehr einfach. Durch sein unauffälliges, ansprechendes Aussehen ist er ideal für Außenbereiche geeignet, in denen das Design wichtig ist.

- Der IHC besteht aus einer Kohlefaserlampe, gelb-oranger Schein, mit hoher Intensität und einem hochglanzpolierten Reflektor für eine optimale Wärmeverteilung.
- Wandmontagekonsole. Kann auch von der Decke abgehängt oder unter einem Sonnenschirm bzw. an einem Pfosten montiert werden. Andere Montagealternativen sind mit Zubehörteilen möglich.
- Mit 0,9 Meter langem Kabel und Netzstecker für den Anschluss an eine geerdete Steckdose.
- Das Gehäuse besteht aus eloxiertem Aluminium, das Gitter aus Nickel/Chrom und die Seitenteile aus pulverbeschichtetem Leichtmetall. Farbe: RAL 9006.


Carbon-Infrarotstrahler IHC (IP44)


Тур	Heizleistung	Spannung	Stromstärke	Max. Heizfadentemperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
IHC12	1150	230V~	5,0	1200	500x77x169	1,9
IHC18	1750	230V~	7,6	1200	676x77x169	2,5

Montagehöhe

Mindestabstand

Positionierung, Montage und Installation

Aufstellung

Die Infrarot-Strahler werden um die zu beheizende Fläche herum montiert (siehe Abbildung 1). Die Geräte werden normalerweise etwa 2 bis 3 Meter über dem Boden positioniert. Grundsätzlich erhöhen 600–800 W/m² die Temperatur um etwa 10 °C bei Infrarot-Strahlern. Die Ausgangsleistung kann reduziert werden, wenn die zu beheizende Fläche eingefasst ist. Wenn die Fläche lediglich überdacht ist, sollte für mindestens 800 W/m² gesorgt werden. 600 W/m² sind ausreichend, wenn die Fläche von drei Wänden umgeben ist. Für vollständig eingefasst Flächen muss der Heizbedarf berechnet werden. Durch die Wärmeverteilung aus zwei Richtungen erzielt man einen optimalen Komfort.

Montage

IHC wird mit der mitgelieferten Halterung horizontal an Wänden befestigt. Der Heizer kann bis zu 45° abgewinkelt werden. Der Wärmestrahler kann auch unter einem Sonnenschirm oder an einem Pfeiler montiert werden. Hierzu wird ein geeigneter U-Bolzen (nicht im Lieferumfang enthalten) sowie die mitgelieferte Halterung verwendet. Zur Deckenmontage ist die IHE-Deckenhalterung (Zubehör) zu verwenden. Andere Montagealternatien entnehmen Sie bitte der Zubehörliste.

Installation

IHC ist mit einem 0,9 Meter langem Kabel und Netzstecker für den Anschluss an eine geerdete Steckdose ausgestattet.

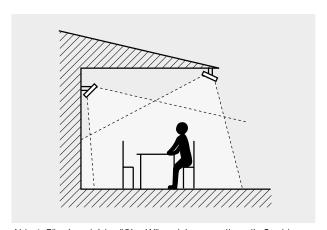
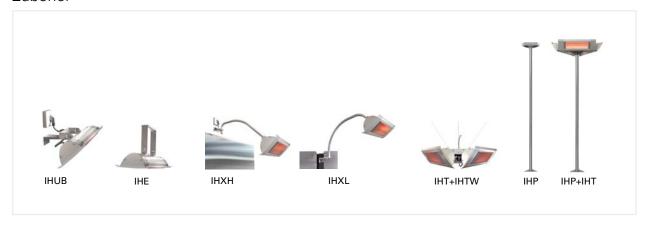



Abb. 1: Für eine gleichmäßige Wärmeleistung sollten die Strahler aus mindestens zwei Richtungen heizen.

Der intensive Kohle-Infrarotstrahler und der hochglanzpolierte Reflektor erzeugen ein sanftes Glühen und eine optimale Wärmeverteilung.

Zubehör

IHUB, Universalhalterung Mit der Halterung kann IH/IHC auch seitlich angewinkelt und mit Hilfe der Klemmschraube beispielsweise auch an einem Windschutz montiert werden.

IHE, Deckenhalterung Zur Befestigung des IH/IHC in der Decke.

IHXH, Herabhängende Verlängerung zur Montage in großer Installationshöhe Zur Installation von IH/IHC in großen Installationshöhen, zum Beispiel über dem Fenster. Inklusive Wandhalterung.

IHXL, Bogenförmige Verlängerung für die Installation in geringer Höhe Zur Installation von IH/IHC in geringer Höhe, zum Beispiel auf einem Windschutz. Inklusive Wandhalterung.

IHT, Dreifachhalterung

Drei IH/IHC Wärmestrahler können an der IHT Halterung montiert werden und strahlen Wärme in alle Richtungen ab. Kann mit drei Seilen von der Decke abgehängt oder an einem Pfosten montiert werden. Geeignet für IH10, IH15 und IHC12.

Тур	Beschreibung
CBT	Elektronische Schaltuhr
IHUB	Universalhalterung
IHE	Deckenhalterung
IHXH	Herabhängende Verlängerung zur hohen Montage
IHXL	Bogenförmige Verlängerung zur tiefen Montage
IHT	Dreifachhalterung
IHTW	Drahtseilset
IHP	Posten für freistehende Installation

IHTW, Drahtseilset

Set aus drei hellen galvanisierten Drahtseilen zur einfachen Aufhängung von IHT.

IHP, Pfosten für freistehende Installation Standpfosten, um den IH/IHC am Fußboden zu befestigen. IHP hat eine fixe Länge von 2.3 m und kann auf die gewünschte Länge abgeschnitten werden. Die IHT Dreifachhalterung liefert Wärme in allen Richtungen. IH/IHC kann mit der Standardhalterung und einem U-Bolzen auch direkt am Pfosten montiert werden.

Mit einer Verlängerungshalterung kann der Strahler unter seinem Befestigungspunkt angebracht werden.

Zeitsteuerung

Die Schaltuhr kann auf die gewünschte Zeit eingestellt werden. Falls die Stromlast den Einstellbereich der Schaltuhr überfordert, oder wenn ein größeres System gesteuert werden soll, kann ein Schütz verwendet werden.

• CBT, elektronische Schaltuhr

CBT

Тур	Beschreibung
CBT	Elektronische Schaltuhr, IP44

Regelgeräte für IHC 1800 W bei einer Verwendung im Gebäude

Der Infrarotstrahler IHC kann auch vorübergehend im Gebäude als Zusatzheizung verwendet werden. Beachten Sie jedoch, dass das Modell IHC18 mit dem Thermostat TAP16R (Zubehör) installiert werden muss, um der Ökodesign-Verordnung (EU) 2015/1188 zu entsprechen. Modelle mit weniger als 1200 W können jedoch im Gebäude mit denselben Kontrollgeräten verwendet werden, die auch im Freien verwendet werden. (IHC12). Siehe oben.

Тур	Beschreibung
TAP16R	ElektronischerThermostat, 16A, IP21
TEP44	Schutzgehäuse fürTAP16R, IP44. Muss um RTX54 ergänzt werden.
RTX54	Externer Raumtemperatursensor. Ersetzt den internen Sensor. NTC10K Ω , IP54
SKG30	Schwarz-Kugel-Sensor, NTC 10 KΩ, IP30
PDK65	Präsenzmelder mit Stromversorgung (bis zu 5 Melder), 230 V~, max 2,3 kW, IP42/IP65
PDK65S	Zusätzlicher Präsenzmelder zu PDK65, IP42
RB3	Relaisbox 400V3N~ (400V3~/V2~, 230V3~/V2~), 16 A, IP44

Weitere Informationen finden Sie im Abschnitt "Regler".

Der IHC eignet sich insbesondere für Bereiche, in denen das Design eine zentrale Rolle spielt und ist dank seiner Wärmeverteilung ideal für geringe oder etwas größere Installationshöhen.

Infrarot-Halogen IH

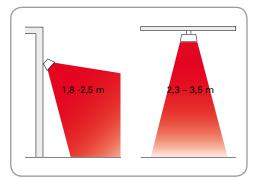
Geeignet für Außenanwendungen mit hohem Designanspruch

Der Halogeninfrarotstrahler IH ist ein leistungsstarker Wärmestrahler mit einer Glühfadentemperatur von 2200 °C, der sich perfekt für ungeschützte Außenbereiche eignet, bei denen das Design eine Rolle spielt. Der IH lässt sich ebenfalls als lokale Heizlösung in größeren Objekten einsetzen. Der IH-Strahler ist in zwei Ausführungen lieferbar und eignet sich daher perfekt für unterschiedliche Anforderungen. IHW sorgt für eine komfortable Wärme im Aufenthaltsbereich in kurzem und weiterem Abstand. IHF strahlt die Wärme direkter und konzentrierter ab und wird etwas höher installiert.

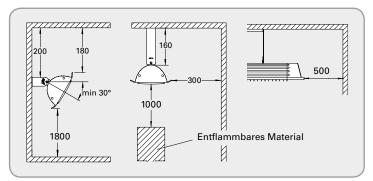
Dank des kompakten Designs ist die Montage des IH-Strahlers sehr einfach. Durch sein unauffälliges, ansprechendes Aussehen ist er ideal für Außenbereiche geeignet, in denen das Design wichtig ist.

- IH ist in zwei Ausführungen lieferbar:
 - IHW sorgt für eine breite Wärmeverteilung (60°) und wird für Installationshöhen von 1,8 bis 2,5 Meter empfohlen.
 - IHF sorgt für eine gezielte Wärmeverteilung (40°) und wird für Installationshöhen von 2,3 bis 3,5 Meter empfohlen.
- Der IH-Strahler besteht aus einer Halogenlampe mit sehr hoher Intensität mit schwacher roter Schein und einem Hochglanzreflektor, der für eine optimale Wärmeverteilung sor

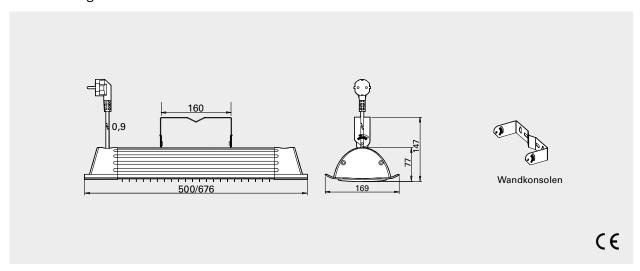
 øt
- Wandmontagekonsole. Kann auch von der Decke abgehängt oder unter einem Sonnenschirm bzw. an einem Pfosten montiert werden. Andere Montagealternativen sind mit Zubehörteilen möglich.
- Mit 0,9 Meter langem Kabel und Netzstecker für den Anschluss an eine geerdete Steckdose.
- Das Gehäuse besteht aus eloxiertem Aluminium, das Gitter aus Nickel/Chrom und die Seitenteile aus pulverbeschichtetem Leichtmetall. Farbe: RAL 9006.


Infrarotstrahler IHW mit breiter Wärmeverteilung (IP44)

Тур	Heizleistung	Spannung	Stromstärke	Max. Heizfadentemperatur	Abmessungen L x H xT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
IHW10	1000	230 V~	4,3	2200	500x77x169	1,9
IHW15	1500	230 V~	6,5	2200	500x77x169	1,9
IHW20	2000	230V~	8,7	2200	676x77x169	2,5


Infrarotstrahler IHF mit konzentrierter Wärmeverteilung (IP44)

Тур	Heizleistung	Spannung	Stromstärke	Max. Heizfadentemperatur	Abmessungen L x H xT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
IHF10	1000	230V~	4,3	2200	500x77x169	1,9
IHF15	1500	230V~	6,5	2200	500x77x169	1,9
IHF20	2000	230V~	8,7	2200	676x77x169	2,5


Montagehöhe

Mindestabstand

Abmessungen

Dank der hohen Temperatur von 2200°C und dem speziellen Reflektor ist der IH extrem effizient und sorgt für eine komfortable Wärme

Wärmestrahler geben eine intensive, angenehme Wärme ab und verlängern damit die Sommersaison.

Positionierung, Montage und Installation

Aufstellung

Die Infrarot-Strahler werden um die zu beheizende Fläche herum montiert (siehe Abbildung 1). Die Geräte werden normalerweise etwa 2 bis 3 Meter über dem Boden positioniert. Grundsätzlich erhöhen 600–800 W/m² die Temperatur um etwa 10 °C bei Infrarot-Strahlern. Die Ausgangsleistung kann reduziert werden, wenn die zu beheizende Fläche eingefasst ist. Wenn die Fläche lediglich überdacht ist, sollte für mindestens 800 W/m² gesorgt werden. 600 W/m² sind ausreichend, wenn die Fläche von drei Wänden umgeben ist. Für vollständig eingefasst Flächen muss der Heizbedarf berechnet werden. Durch die Wärmeverteilung aus zwei Richtungen erzielt man einen optimalen Komfort.

Montage

IH wird mit der mitgelieferten Halterung horizontal an Wänden befestigt. Der Heizer kann bis zu 45° abgewinkelt werden. Der Wärmestrahler kann auch unter einem Sonnenschirm oder an einem Pfeiler montiert werden. Hierzu wird ein geeigneter U-Bolzen (nicht im Lieferumfang enthalten) sowie die mitgelieferte Halterung verwendet. Zur Deckenmontage ist die IHE-Deckenhalterung (Zubehör) zu verwenden. Andere Montagealternatien entnehmen Sie bitte der Zubehörliste.

Installation

IH ist mit einem 0,9 Meter langem Kabel und Netzstecker für den Anschluss an eine geerdete Steckdose ausgestattet.

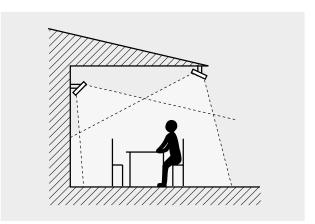
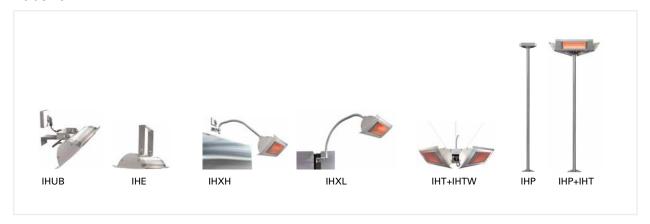


Abb. 1: Für eine gleichmäßige Wärmeleistung sollten die Strahler aus mindestens zwei Richtungen heizen.

Ein Pfosten für die Bodenmontage ist optional erhältlich. Mithilfe einer Dreifachhalterung können drei Infrarotstrahler am selben Pfosten befestigt werden, damit eine Wärmeausbreitung in allen Richtungen erfolgen kann.

Regelungsoptionen

Zeitsteuerung


Die Schaltuhr kann auf die gewünschte Zeit eingestellt werden. Falls die Stromlast den Einstellbereich der Schaltuhr überfordert, oder wenn ein größeres System gesteuert werden soll, kann ein Schütz verwendet werden.

• CBT, elektronische Schaltuhr

Тур	Beschreibung
CBT	Elektronische Schaltuhr, IP44

Zubehör

IHUB, Universalhalterung Mit der Halterung kann IH/IHC auch seitlich angewinkelt und mit Hilfe der Klemmschraube beispielsweise auch an einem Windschutz montiert werden.

IHE, Deckenhalterung Zur Befestigung des IH/IHC in der Decke.

IHXH, Herabhängende Verlängerung zur Montage in großer Installationshöhe Zur Installation von IH/IHC in großen Installationshöhen, zum Beispiel über dem Fenster. Inklusive Wandhalterung.

IHXL, Bogenförmige Verlängerung für die Installation in geringer Höhe Zur Installation von IH/IHC in geringer Höhe, zum Beispiel auf einem Windschutz. Inklusive Wandhalterung.

IHT, Dreifachhalterung

Drei IH/IHC Wärmestrahler können an der IHT Halterung montiert werden und strahlen Wärme in alle Richtungen ab. Kann mit drei Seilen von der Decke abgehängt oder an einem Pfosten montiert werden. Geeignet für IH10, IH15 und IHC12.

Тур	Beschreibung			
	-			
IHUB	Universalhalterung			
IHE	Deckenhalterung			
IHXH	Herabhängende Verlängerung zur hohen Montage			
IHXL	Bogenförmige Verlängerung zur tiefen Montage			
IHT	Dreifachhalterung			
IHTW	Drahtseilset			
IHP	Posten für freistehende Installation, 2,3 m			

IHTW, Drahtseilset

Set aus drei hellen galvanisierten Drahtseilen zur einfachen Aufhängung von IHT.

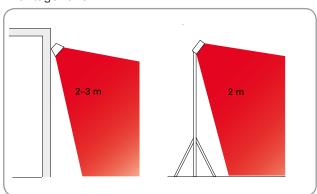
IHP, Pfosten für freistehende Installation Standpfosten, um den IH/IHC am Fußboden zu befestigen. IHP hat eine fixe Länge von 2.3 m und kann auf die gewünschte Länge abgeschnitten werden. Die IHT Dreifachhalterung liefert Wärme in allen Richtungen. IH/IHC kann mit der Standardhalterung und einem U-Bolzen auch direkt am Pfosten montiert werden.

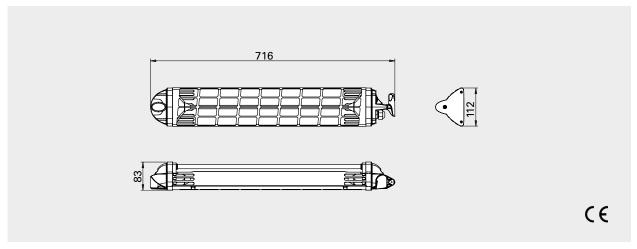
Mit einer Verlängerungshalterung kann der Strahler unter seinem Befestigungspunkt angebracht werden.

Infrarotstrahler ELIR

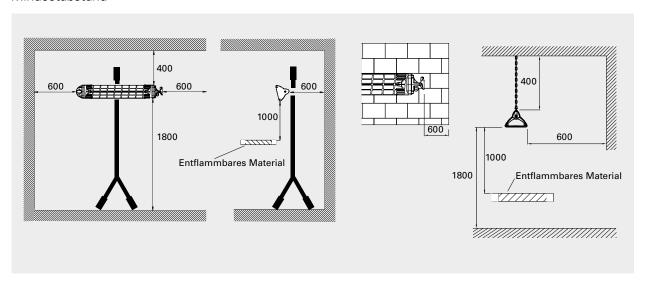
Für Außenanwendungen, bei denen hohe Flexibilität gewünscht wird

ELIR erzeugt eine intensive Wärme und eignet sich für alle Außenanwendungen. ELIR ist leicht, stabil und tragbar, eignet sich aber auch gut für eine vorübergehende Heizung von Baustellen und Veranstaltungen. Die hohe Schutzklasse (IP65) ermöglicht den Einbau des Wärmestrahlers in fast allen Umgebungen. Durch seine konzentrierte Wärme ist es ein ausgezeichnetes Zusatzgerät zu Entfeuchtern beim Austrocknen von Wasserschäden.


Durchdachtes Design in kompakter Form. Einfach, robust und leicht (1 kg). ELIR verfügt über keine Schutzglas-Abdeckung, daher hat er eine $10-15\,\%$ höhere Effektivität als ein glasgeschützter Heizer der gleichen Schutzklasse.


- Alle Teile sind korrosionsbeständig.
- Wandhalterung inklusive. Ständer und Ketten für die Deckeninstallation sind als Zubehör verfügbar.
- Gehäuse/Reflektoren aus hochglanzpoliertem Aluminium mit maximaler Korrosionsbeständigkeit.
- Graue Anschlusskästen aus wärme- und witterungsbeständigem Kunststoff. Farbe: RAL 7035.

Infrarotstrahler ELIR (IP65)


Тур	Heizleistung	Spannung	Stromstärke	Max. Strahlertemperatur	Abmessungen LxHxT	Gewicht
	[W]	[V]	[A]	[°C]	[mm]	[kg]
ELIR12	1200	230 V~	5,2	2200	712x112x83	1,0

Montagehöhe

Mindestabstand

Der ELIR wird horizontal auf einem Ständer bzw. an einer Wand befestigt oder mit Ketten abgehängt.

Die hohe Schutzklasse (IP65) ermöglicht den Einbau des Wärmestrahlers in fast allen Umgebungen.

Positionierung, Montage und Installation

Aufstellung

Die Infrarot-Strahler werden um die zu beheizende Fläche herum montiert (siehe Abbildung 1). Die Geräte werden normalerweise etwa 2 bis 3 Meter über dem Boden positioniert. Grundsätzlich erhöhen 600–800 W/m² die Temperatur um etwa 10 °C bei Infrarot-Strahlern. Die Ausgangsleistung kann reduziert werden, wenn die zu beheizende Fläche eingefasst ist. Wenn die Fläche lediglich überdacht ist, sollte für mindestens 800 W/m² gesorgt werden. 600 W/m² sind ausreichend, wenn die Fläche von drei Wänden umgeben ist. Für vollständig eingefasst Flächen muss der Heizbedarf berechnet werden. Durch die Wärmeverteilung aus zwei Richtungen erzielt man einen optimalen Komfort.

Montage

Der ELIR wird horizontal auf einem Ständer bzw. an einer Wand befestigt oder mit Ketten abgehängt. Der Winkel des wärmestrahlers kann für optimale Leistung angepasst werden. Wandhalterung inklusive. Ständer und Ketten für die Deckeninstallation sind als Zubehör verfügbar.

Installation

ELIR kann tragbar eingesetzt oder dauerhaft installiert werden. Kabel und Stecker sind im Lieferumfang enthalten.

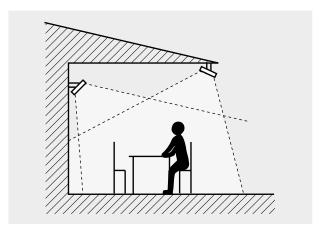
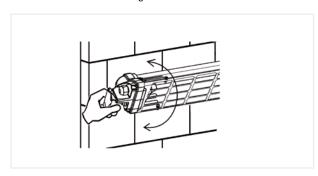



Abb. 1: Für eine gleichmäßige Wärmeleistung sollten die Strahler aus mindestens zwei Richtungen heizen.

Einstellwinkel

Das Gerät ELIR ist kompakt und leicht, auf einem Stativ montiert, ist es tragbar und für zeitweiliges Heizen geeignet.

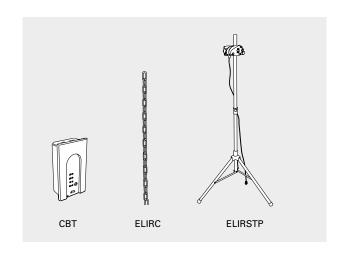
Durch seine konzentrierte Wärme ist es ein ausgezeichnetes Zusatzgerät zu Entfeuchtern beim Austrocknen von Wasserschäden.

Zeitsteuerung

Die Schaltuhr kann auf die gewünschte Zeit eingestellt werden. Falls die Stromlast den Einstellbereich der Schaltuhr überfordert, oder wenn ein größeres System gesteuert werden soll, kann ein Schütz verwendet werden.

• CBT, elektronische Schaltuhr

Weitere Informationen finden Sie im Abschnitt "Regler".


Zubehör

ELIRC, Kette für Deckenmontage

ELIRSTP, Stativ für den tragbaren Einsatz Stativ, (dreibeinig), mit Halterung für ELIR

IREL12, Ersatzlampe

Die Halogenlampe mit 1,2 kW ist austauschbar. Die Lebensdauer der Lampe ist unter anderem von der Umgebungstemperatur und von der Einbauposition abhängig.

Тур	Beschreibung	HxBxT
		[mm]
CBT	Elektronische Schaltuhr	155x87x43
ELIRC	Kette für Deckenmontage	L: 2500
ELIRSTP	Stativ für den tragbaren Einsatz	H: 2000
IREL12	Ersatzlampe	

Mit einem Klick zum Ziel

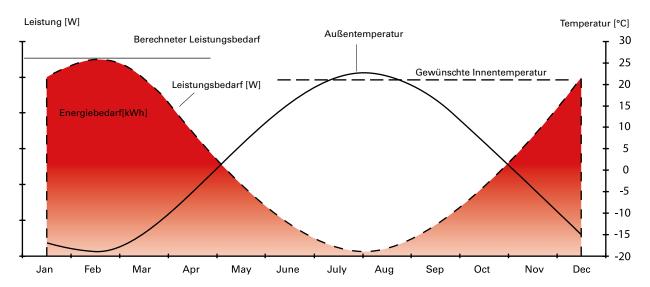
Wir erleichtern Ihnen den Alltag, indem wir Ihnen relevante Produktinformationen zusammen mit unserem Fachwissen in Sachen Beheizung bieten. Auf unserer Internetseite www.frico.se finden Sie stets aktuelle Informationen, können sich bei der Wahl des richtigen Produkts helfen lassen und unsere Referenzmaterialien durchstöbern, um sich inspirieren zu lassen, die Neuigkeiten lesen oder einen Blick in die Handbücher, Schaltpläne usw. werfen.

Technisches Handbuch Wärmestrahler

- 78 Heizung Energie
- 79 Heizungssysteme
- 80 Energieeinsparungen
- 83 Was bedeutet Wärmestrahlung?
- 84 Leitfaden Wärmestrahler-Heizungen im Gebäude
- 86 Leitfaden Wärmestrahler-Heizungen im Freien
- 88 Leistungs-und Energieberechnung
- 93 Tabellen zur Dimensionierung

Heizung - Energie

Ob ein Gebäude geheizt werden muss, ist abhängig vom Temperaturunterschied zwischen der Raumluft und der Außenluft.

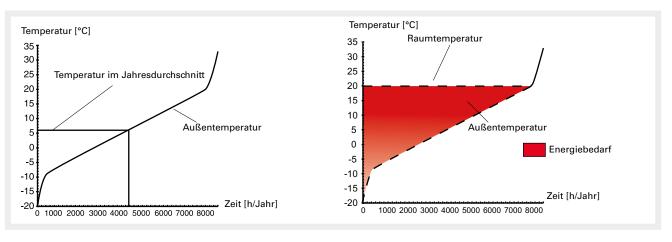

Wärmeverluste in einem Gebäude können in zwei Teile aufgeteilt werden:

- Transmissionswärmeverluste: Verluste über Gebäudestrukturen (Dach, Wände etc.)
- Lüftungsverluste: Verluste über Lüftung, Leckage und Öffnungen

Die Temperatur der Außenluft ändert sich je nach Jahreszeit und je nach Ort, die Raumtemperatur sollte hingegen auf einem gleichmäßigen und angenehmen Niveau gehalten werden.

Der Energiebedarf eines Gebäudes ist die Energie, die während eines Jahres verbraucht wird, d. h. die eingefärbte Fläche im untenstehenden Schaubild.

Der Designleistungsbedarf eines Gebäudes ist die erforderliche Leistung, um die gewünschte Raumtemperatur aufrechtzuerhalten, wenn es draußen kalt ist.



Jahresdauer-Liniendiagramm

Eine verbreitete Darstellungsart des Energiebedarfs zum Heizen ist das Diagramm mit den Jahresdauerlinien. Darin sind die Statistiken meteorologischer Daten zur Berechnung des Energiebedarfs abgebildet. Das Diagramm zeigt zwei Achsen. Auf der X-Achse wird die Anzahl der Stunden pro Jahr dargestellt, auf der Y-Achse die Außentemperatur in °C. Auf einer Kurve kann die Dauer der Außentemperatur an jeder Stelle abgelesen werden. Falls die Jahres-Durchschnittstemperatur +8 °C beträgt, ist es während 4380 Stunden oder sechs

Monaten kälter als +8 °C.

Wird eine Linie für die gewünschte Innentemperatur in das Diagramm eingefügt, z. B. 20 °C, so kreuzt diese Linie das Diagramm und zeigt die Anzahl der benötigten Gradstunden für das Aufheizen auf 20 °C. Die Anzahl der Gradstunden ist ein Maß, das dem Energiebedarf zum Heizen proportional entspricht. Für jeden gewünschten Ort kann der Wärmebedarf entweder mit einem solchen Diagramm berechnet werden oder mit Klimatabellen, siehe Tabelle im hinteren Teil dieses Kapitels.

Heizungssysteme

Das Heizungssystem muss sämtliche Wärmeverluste ausgleichen, Transmissionswärmeverluste und Lüftungsverluste. Drei Hauptarten von Heizungssystemen können unterschieden werden:

- Wärmestrahler-Heizungen
- Luftheizungen
- Konvektionsheizungen, d. h. Radiatoren und Konvektoren

Heizen mit Wärmestrahlern

Wärmestrahler übertragen die Wärme direkt auf Gegenstände und Oberflächen, ohne dabei die Luft zu erwärmen. Die Oberflächen werden erwärmt und erwärmen ihrerseits die Raumluft. Diese direkte Strahlungswärme wird von den meisten Menschen als angenehme Wärme empfunden. Der Raum erscheint auch dann bereits angenehm temperiert, wenn die Lufttemperatur verhältnismäßig niedrig ist. Wärmestrahler verhindern auch die Ansammlung von überhitzter Luft unter der Decke. Die ausgeglichene vertikale Temperaturverteilung sowie die etwas niedrigere Lufttemperatur tragen zu erheblichen Energieeinsparungen bei.

Strahlungswärme wirkt sehr effektiv gegen kalte Luftströmungen und gegen Zugluft von z. B. großen Fenstern.

Luftheizung

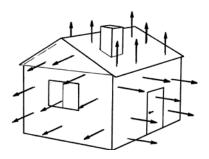
Eine Warmluftheizung kompensiert Transmissions- und Lüftungswärmeverluste, indem erwärmte Luft in das Gebäude geleitet wird. Die warme Luft kühlt sich durch Wärmedurchgangsverluste an den Außenwänden ab. Daher muss die zugeführte Luft wärmer sein als die gewünschte Raumtemperatur.

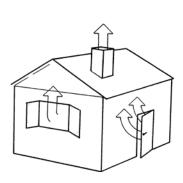
Zwischen Raumdecke und Fußboden können sich große Temperaturunterschiede ergeben, da die erwärmte Luft leichter ist und nach oben steigt. Manchmal kann es erforderlich werden, die Unterschiede auszugleichen, z. B. durch Deckenventilatoren.

Konvektionsheizung

Konvektionsheizungen erwärmen die Räume, indem sie die Luft erwärmen, wenn sie an heißen Oberflächen, Radiatoren oder Konvektoren, entlangströmt. Die Luftströmung an den Radiatoren oder Konvektoren wird hauptsächlich durch thermische Strömungen verursacht. Die warme Luft steigt nach oben und wird durch kalte Luft ersetzt. Dadurch entsteht ein Luftkreislauf oder Konvektion.

Kalten Luftströmungen, z. B. von Fenstern, wird effektiv durch einen warmen Luftstrom entgegengewirkt, wenn die Wärmequelle unter dem Fenster platziert wird.





Energieeinsparungen

Wärmeverluste

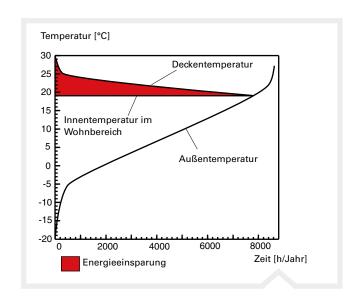
Transmissionswärmeverluste Die Höhe der Wärmeverluste variiert je nach Gebäudebereich und Isolation. Die Verluste sind proportional zur Temperaturdifferenz von Innenluft und Außenluft.

Lüftungsverluste

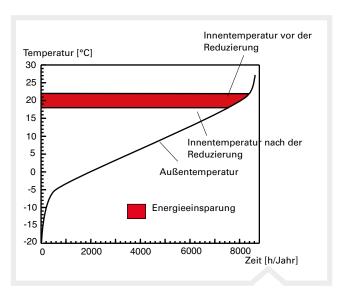
Die Lüftung eines Gebäudes erfolgt entweder mechanisch oder auf natürlichem Weg. Mechanische Lüftung erfolgt meist über ein Luftzuführungs- und Abluftsystem, das eine Wärmerückgewinnung ermöglicht. Natürliche und ungewünschte Lüftung besteht aus thermischen Strömungen, die warme Luft zum Aufsteigen bringen, die durch Öffnungen und nicht abgedichtete Bereiche entweichen kann.

Methoden zum Reduzieren von Wärmeverlusten und Heizkosten

Eine verbesserte Isolierung des Gebäudes verringert selbstverständlich Wärmeverluste und erhöht Energieeinsparungen, es gibt aber noch andere Methoden zur Einsparung von Heizkosten.


Ausgleich von Temperaturdifferenzen Warme Luft ist leichter als Kaltluft und sammelt sich am höchsten Punkt eines Gebäudes. So entstehen vertikale Temperaturdifferenzen zwischen Fußbodenund Deckenbereich. Der Temperaturgradient (°C/m) bezeichnet die Temperatursteigerung pro Meter Höhe und variiert je nach Jahreszeit und Heizungssystem. In Räumen mit hohen Decken ist der Temperaturunterschied zwischen dem Wohnbereich und der Raumdecke häufig sehr groß, zwischen 10 - 15 °C. Ein Ausgleich dieses Unterschieds kann die Wärmeverluste um bis zu 30 % verringern und die Heizung optimal nutzen.

Wärmestrahler


Die Heizung mit einem an der Decke montierten Wärmestrahler erfolgt indirekt. Die Wärme entwickelt sich, wenn die Wärmestrahlen auf Oberflächen treffen, wie Böden, Wände, Maschinen usw. Diese Oberflächen erwärmen daraufhin die Luft des Wohnbereiches. Der Temperaturunterschied zwischen Boden und Decke ist daher sehr gering.

Deckenventilatoren

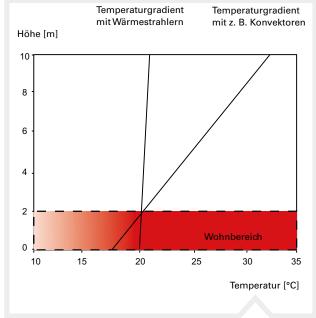
Die Heizung mit z. B. Heizlüftern oder Radiatoren ergibt einen verhältnismäßig hohen Temperaturgradienten. Die Installation von Deckenventilatoren ist dabei ein sehr einfacher und kostengünstiger Weg zum Ausgleich der Temperaturdifferenz. Die warme Luft von der Decke wird damit nach unten in den Wohnbereich gedrückt.

Geringere Innentemperatur Eine weitere Methode der Energieeinsparung ist die Verringerung der Innentemperatur. Dies muss allerdings ohne Einbußen an Komfort erfolgen.

• Geringere Lufttemperatur

Beim Einsatz von Wärmestrahlern kann die Lufttemperatur eines Raumes um einige Grad verringert werden, trotzdem wird eine höhere Temperatur gefühlt, die sogenannte Betriebstemperatur. Eine Reduzierung der Temperatur um 1 °C ermöglicht Energieeinsparungen von 5 %. Betriebstemperaturen sind die von den Bewohnern gefühlten Temperaturen. Sie sind die Summe aus Lufttemperatur und Strahlungstemperaturen. Alle Gegenstände verursachen Strahlungstemperaturwechsel. Kalte Oberflächen verringern sie und warme Oberflächen erhöhen sie. Betriebstemperaturen können beschrieben werden als:

$$\begin{split} t_{\rm op} &= \quad \underline{t_{\rm Luft} + t_{\rm rad.}} \\ &= \quad \underline{t_{\rm Luft} + \left(t_{\rm Luft} + \Delta t_{\rm rad.}\right)} \\ &= t_{\rm Luft} + \quad \underline{\Delta t_{\rm rad.}} \\ &= \quad \text{wobei } t_{\rm Luft} \\ &= \quad \text{Lufttemperatur} \\ &t_{\rm rad.} \\ &= \quad \text{Strahlungstemperatur (einschl. Lufttemperatur)} \\ &\Delta t_{\rm rad.} \\ &= \quad \text{Strahlungstemperaturwechsel} \\ &\text{(ohne Lufttemperatur)} \end{split}$$


• Punkt- und Flächenheizung

Mit Wärmestrahlern können in verschiedenen Gebäudebereichen unterschiedliche Temperaturen erzeugt werden. Zum Beispiel muss nicht das gesamte Gebäude die gleiche hohe Temperatur aufweisen, wenn Arbeitsbereiche weit auseinander liegen. Aus Komfortgründen erfordern unterschiedliche Arbeitssituationen ebenfalls unterschiedliche Temperaturen. Punktheizung kann man auch mit Punktbeleuchtung vergleichen. Wenn Personen präsent sind, wird die Heizung oder Beleuchtung verstärkt.

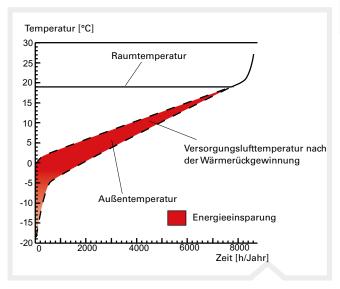
• Geringer Temperaturgradient

Die Heizung mit Wärmestrahlern liefert eine sehr ausgeglichene vertikale Temperaturverteilung. Die Wärme entwickelt sich, wenn die Wärmestrahlen auf Oberflächen treffen, wie Böden, Wände, Maschinen usw. Diese Oberflächen erwärmen daraufhin die Luft des Wohnbereiches. Die Temperaturunterschiede zwischen Decke und Fußboden werden sehr gering und ein "Überheizen" wird vermieden. Besonders in Gebäuden mit hohen Decken werden gegenüber konventionellen Heizungssystemen große Energieeinsparungen erzielt.

Der Temperaturgradient [°C/m], der Temperaturanstieg pro Meter Höhe, ist für Wärmestrahler sehr gering, ca. 0,3 °C/m. Die Warmluftheizungen oder konventionelle Radiatorheizungen verursachen bedeutend größere Temperaturunterschiede pro Meter Höhe mit Temperaturgradienten von 2,5 und 1,7 °C/m bei voller Leistung.

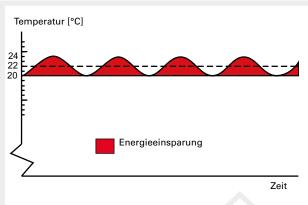
• Zeitsteuerung

Falls sich niemand in einem Gebäude aufhält, z.B. in der Nacht oder in Ferienzeiten, kann die Temperatur heruntergefahren werden.


Verluste reduzieren

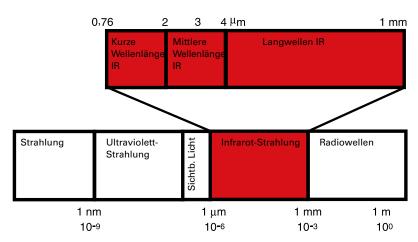
Durch Öffnungen wie Türen und Tore entstehen bedeutende Energieverluste. Durch die Öffnung entweicht ständig teuer beheizte oder gekühlte (klimatisierte) Luft. Dies kann durch die Installation von Luftschleiern verhindert werden. Luftschleier bilden eine Sperre zwischen unterschiedlichen Temperaturzonen. Eine ausgeglichene Ventilation und kürzere Öffnungszeiten können ebenfalls Energieverluste reduzieren.

Erfahren Sie mehr über Luftschleier von Frico auf unserer Website.


Wärmerückgewinnung

Um bei einer mechanischen Belüftung Lüftungsverluste zu reduzieren, können Teile der Abluftenergie zurück gewonnen werden. Eine einfache Methode besteht darin, sofort Teile der warmen Abluft wieder in die Zulufteinheit zu leiten, die sogenannte Rückluft. Eine weitere Methode ist der Einsatz eines Wärmetauschers, der dem Gebäude wieder einen Teil der Heizenergie zuführt.

Besserer Temperaturausgleich


Mit einem Standard-Ein/Aus-Thermostat kann die Temperatur um einen bestimmten Wert variiert werden. Falls die gewünschte Temperatur niemals unter 20 °C fallen soll, muss die Durchschnittstemperatur etwa 22 °C betragen. Mit einem Triac-gesteuerten Regler kann die Raumtemperatur auf 20 °C eingestellt werden, sie wird dann nicht mehr vom Einstellwert abweichen. Eine Reduzierung der Temperatur um 1 °C ermöglicht Energieeinsparungen von 5 %.

Was bedeutet Wärmestrahlung?

Temperaturstrahlung wird erzeugt, da alle Körper Energie in Form von elektromagnetischen Wellen abstrahlen. Da die Strahlung von warmen Körpern kommt, wird sie auch Wärmestrahlung genannt. Die Abbildung unten zeigt den Bereich des elektromagnetischen Spektrums, in dem Wärmestrahlung vorkommt. Wellenlänge und Strahlungsintensität eines Wärmestrahlers hängen von der Temperatur ab. Je höher die Elementtemperatur eines Wärmestrahlers ist, desto kürzer ist die Wellenlänge und desto höher die Strahlungsintensität.

Ein Strahlungsaustausch zwischen zwei Körpern findet nur statt, wenn zwischen ihnen eine Temperaturdifferenz besteht. Menschen befinden sich permanent im Wärmeaustausch mit ihrer Umwelt. Wenn der Mensch viel Wärme verliert, ist ihm kalt. Es ist für ihn notwendig, dass ein thermischer Punkt erreicht wird, in dem ein Gleichgewicht herrscht, dieser Punkt entspricht der Komfort-Temperatur. Die Komfort-Temperatur wird durch Lufttemperatur, Wandtemperatur, Luftgeschwindigkeit und Luftfeuchtigkeit bestimmt. Das Heizen mit Wärmestrahlern erzeugt ein perfektes Komfortklima.

Elektromagnetisches Spektrum

Beispiele für den Einsatz unterschiedlicher Wärmestrahler

Lager mit hoher Decke: Elztrip EZ300 oder Industrie-Infrarotstrahler IR

Verkauf: Elztrip EZ200

Kasse: Thermokassette HP

Leitfaden – Wärmestrahler-Heizungen im Gebäude

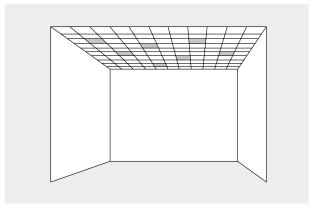
Vollheizung

Beim Entwurf eines Heizsystems muss der Leistungsbedarf eines Gebäudes berechnet werden. Erfahren Sie mehr über Leistungs- und Energieberechnungen auf den folgenden Seiten. Für Wärmestrahler mit einer geringeren Elementtemperatur (z. B. Thermocassette HP und Elztrip) gilt eine Faustregel, um einen Näherungswert für die Anzahl der Wärmestrahler zu berechnen, die für das Heizen eines Gebäudes erforderlich sind:

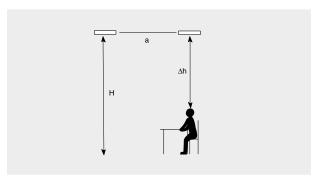
Mindestanzahl von Strahlern Fläche der Räumlichkeiten [m²]
Installationshöhe [m] × Installationshöhe [m]

Diese Formel ergibt eine erste Schätzung der Mindestanzahl von Wärmestrahlern, die für ein angenehmes Raumklima benötigt werden. Um die benötigte Leistung pro Wärmestrahler zu errechnen, muss zuerst der Gesamtleistungsbedarf berechnet werden.

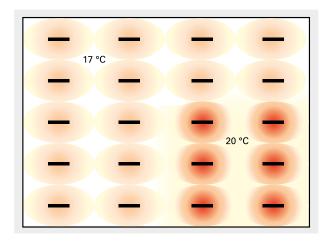
Empfohlener Abstand für Elztrip


Bei der Planung der Elztrip-Installation sollte man beachten, dass der Abstand zwischen den Wärmestrahlern nicht größer sein darf als der Abstand zwischen Wärmestrahler und Fußboden, d. h. "a" sollte kürzer sein als "H". Siehe abb. In Räumen, die nicht oft genutzt werden, sind die Anforderungen an den Komfort gewöhnlich geringer und der Abstand zwischen den Wärmestrahlern kann vergrößert werden. In Räumen, die regelmäßig genutzt werden, sollte der Abstand zwischen einer sitzenden Person und dem Wärmestrahler mindestens 1,5 bis 2 m (Δh) betragen. Wenn diese beiden Richtlinien befolgt werden, wird die maximale Temperaturdifferenz im Betrieb htop= 5 °C das Wohlbefinden nicht beeinträchtigen. Das heißt, die Differenz zwischen tatsächlicher und gefühlter Temperatur beträgt nicht mehr als 5 °C.

Flächenheizung

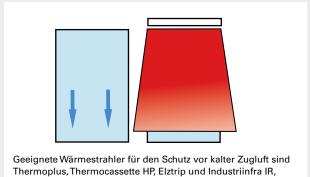

Unterschiedliche Arbeitssituationen erfordern unterschiedliche Temperaturen. Mit Wärmestrahlern kann ein Gebäude sehr einfach in bestimmte Temperaturzonen unterteilt werden oder individuelle Arbeitsbereiche können punktuell beheizt werden. Dadurch entstehen geringere Heizkosten und ein erhöhter Heizkomfort.

Ergänzende Heizung


Als Ergänzung zu anderen Heizsystemen oder bei einer Erweiterung sind Wärmestrahler häufig eine einfache, kostengünstige Lösung. Bei einem wasserbeheizten Gebäude ist es oft einfacher und flexibler, einige elektrische Wärmestrahler zu installieren, als das Heizrohrsystem zu erweitern.

Beispiel der Vollheizung mit Thermocassette HP installiert in einer Zwischendecke

Empfohlener Abstand für Elztrip


Planzeichnung: Temperaturzonen mit Wärmestrahlern

Geeignete Wärmestrahler für die Flächenheizung sind Thermocassette HP, Elztrip, IR und Aquaztrip, abhängig von der Installationshöhe und den Bedingungen des Gebäudes.

Schutz vor kalter Zugluft Eine kalte Oberfläche, z. B. ein Fenster, hat eine kühlende Wirkung auf die umgebende Luft. Wärmestrahler schützen wirkungsvoll und kostengünstig vor kalter Zugluft von Fensterflächen, indem die Fensterfläche aufgeheizt wird. Je kälter das Fenster, desto mehr Strahlungswärme ist erforderlich. Die Heizstrahlen gehen "automatisch" an die Stelle, an der sie am meisten benötigt werden, wodurch das Schaffen eines komfortablen Raumklimas erleichtert wird.

abhängig von der Installationshöhe und der Fensterfläche.

Leitfaden – Wärmestrahler-Heizungen im Freien

Aufstellung

Die Infrarot-Strahler werden um die zu beheizende Fläche herum montiert. Durch die Wärmeverteilung aus zwei Richtungen erzielt man einen optimalen Komfort.

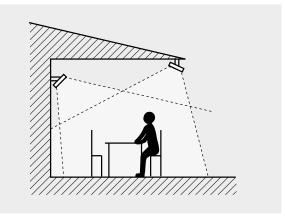
Leistungsbedarf

Es kann eine Faustregel für den Leistungsbedarf verwendet werden, um einzuschätzen, wie viele und welche Wärmestrahler benötigt werden. Die Ausgangsleistung kann reduziert werden, wenn die zu beheizende Fläche eingefasst ist. Für vollständig eingefasst Flächen muss der Heizbedarf berechnet werden.

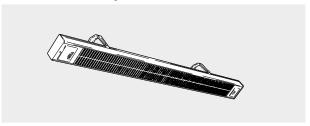
Wenn es sehr windig ist, ist ein Strahler mit einer höheren Ausgangsleistung erforderlich, um eine angemessene Heizleistung zu gewährleisten. Dasselbe gilt für die Installationshöhe. Wenn die Strahler relativ hoch installiert sind, ist eine höhere Ausgangsleistung erforderlich.

Infrarotstrahler mit rohrförmigen Heizelementen 750-1000 W/m² erhöht die wahrgenommene Temperatur

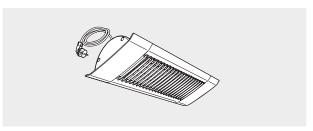
Wenn der Bereich überdacht ist: mindestens 1000 W/m². Wenn der Bereich von drei Wänden umgeben ist: 750 W/m².


Halogen- und Carbon-Infrarotstrahler

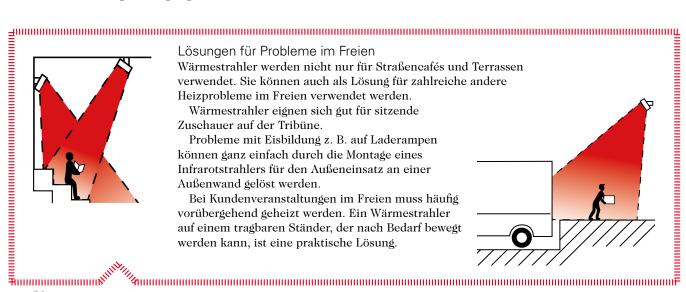
600-800 W/m² erhöht die wahrgenommene Temperatur um etwa 10 °C.


Wenn der Bereich überdacht ist: mindestens 800 W/m². Wenn der Bereich von drei Wänden umgeben ist: 600 W/m².

Montagehöhe

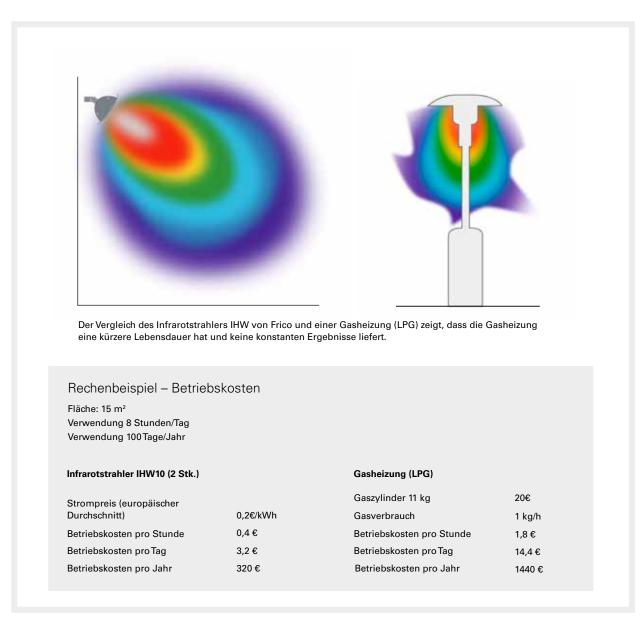

Wenn der Strahler in größerer Höhe montiert wird, muss die Wärmeverteilung so ausgerichtet sein, dass sie bis unten im Sitzbereich zu spüren ist. Wenn der Strahler jedoch in geringer Höhe montiert wird, kann die gezielte Wärmestrahlung als unangenehm wahrgenommen werden. Hier ist ein Wärmestrahler mit großflächiger Wärmeverteilung besser geeignet.

Für eine gleichmäßige Wärmeleistung sollten die Strahler aus mindestens zwei Richtungen heizen.



CIR ist ein Beispiel für einen Infrarotstrahler mit rohrförmigen Elementen.

Der Halogen-Infrarotstrahler IH und der Carbon-Infrarotstrahler IHC sind in ihrem Aussehen identisch, unterscheiden sich jedoch in ihren Lampen und in der Wärmeverteilung.


≨......¥

Vergleich von elektrischen Infrarotstrahlern und Gasheizungen (LPG)

Eine Alternative zu einem elektrischen Infrarotstrahler ist eine Terrassenheizung mit LP-Gas. Eine Gasheizung erfordert keinen elektrischen Anschluss. Das kann gelegentlich praktisch sein, jedoch haben elektrische Infrarotstrahler mehr Vorteile.

Vorteile eines elektrischen Infrarotstrahlers:

- Energieeffizient fast alle zusätzliche Energie wird in Wärme umgewandelt
- Sichere Verwendung
- Verträgt Wetter und Wind besser
- Erfordert nur eine minimale Wartung
- Heizt sofort, sobald Sie auf den Knopf drücken
- Kann auch in kleineren Bereichen verwendet werden, in denen die Sauerstoffversorgung begrenzt ist
- Besser für die Umwelt
- Raumsparend
- Geringe Betriebskosten

Leistungs-und Energieberechnung

Leistungsbedarf

Die Wärmeverluste eines Gebäudes setzen sich aus zwei Komponenten zusammen, aus den Transmissionswärmeverlusten der Wände, Fenster, Türen und des Daches sowie aus den Lüftungsverlusten.

Transmissionswärmeverluste:

$$P_{T} = A \times U \times (t_{Raum} - DUT)$$

Lüftungsverluste:

$$P_v = q \times c \times \rho \times (t_{Raum} - DUT)$$

$$P_v = Q \times (1-\alpha) \times (t_{Raum} - DUT) \times 0.33$$

wobei

= Wärmedurchgangskoeffizient [W/m² °C]

(=k.-Koeffizient)

= Fläche des umbauten Raumes [m²] Α

= Raumtemperatur [°C] $\begin{array}{c} t_{_{Raum}} \\ DUT \end{array}$

= niedrigste Außentemperatur der Gegend [°C]

= berechneter Außen-Luftstrom [m³/s], q

Zwangslüftung kann vernachlässigt werden

= spezifische Heizkapazität [J/kg°C] e

= Dichte [kg/m³] ρ = Luftstrom $[m^3/s]$ Q

= Effizienz der Wärmerückgewinnung, 0 - 1

Der Wärmedurchgangskoeffizient k. kann aus Tabellen und Diagrammen abgelesen oder berechnet werden, wenn die Baumaterialien bekannt sind.

Energiebedarf

Der Energiebedarf für das Heizen wird durch den Leistungsbedarf und die Anzahl der Gradstunden bestimmt, die für das Aufheizen auf die gewünschte Temperatur erforderlich sind. Der theoretisch erforderliche Energiebedarf verringert sich durch die interne Wärmeenergie E,.

Tatsächlicher Energiebedarf

$$\mathbf{E} = \frac{\mathbf{P_{t}}}{\mathbf{t_{local}} - \mathbf{DOT}} \times^{\circ}\mathbf{Ch} + \frac{\mathbf{P_{v}}}{\mathbf{t_{local}} - \mathbf{DOT}} \times^{\circ}\mathbf{Ch} - \mathbf{E_{1}}$$

Interne Wärmeenergie

$$E_1 = P_i \times A_{Boden} \times Betrieb \times 8760$$

°Ch = Anzahl der Gradstunden zum Heizen E, = interne Wärmeenergie [Wh/Jahr] (abhängig von den Raumaktivitäten, kann aus Tabellen und Diagrammen abgelesen werden) P_i = interne Wärmeabgabe [W/m²] Betrieb = Betriebszeitfaktor für die interne Wärmeabgabe

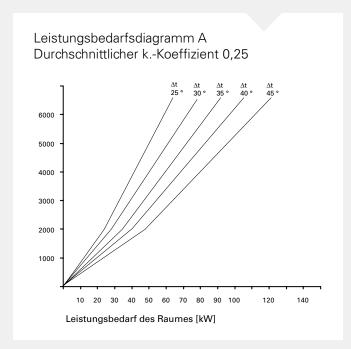
Der Betriebszeit-Faktor berechnet sich aus der Betriebszeit der Aktivität wie folgt: Betriebszeit = (Stunden/24) \times (Tage/7) Stunden = Anzahl der Betriebsstunden pro Tag Tage = Anzahl der Betriebstage pro Woche

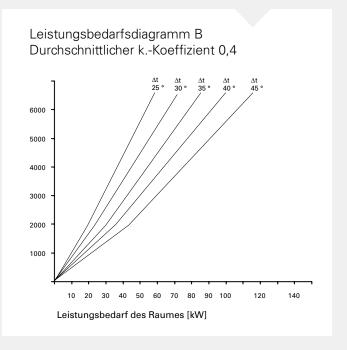
Belüftungssysteme können ebenfalls Betriebszeitfaktoren haben, falls sie mit halber Geschwindigkeit laufen oder während der Nacht angehalten werden.

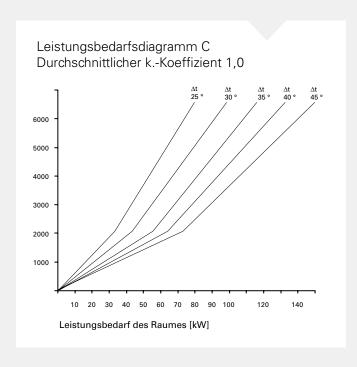
Technischer Vertrieb

Der Technische Vertrieb von Frico bietet kostenlos an:

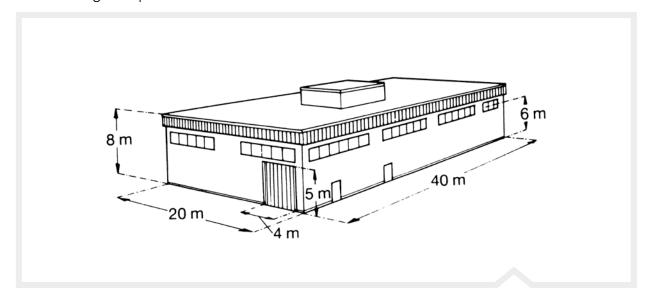
- Leistung und Energieberechnungen
- Lösungen für Heizungsprobleme und Ratschläge zum Energiesparen
- Hinweise zu Dimensionierung und Anordnung
- Lösungen für komfortable Heizungen


Bitte nehmen Sie mit uns Kontakt auf, um Heizungsund Energiekosten zu sparen.


Auf unserer Website www.frico.se können Sie sehr einfach eine Leistungsberechnung durchführen, indem Sie die Daten für ein Gebäude und die entsprechenden Temperaturen eintragen. Je genauer die eingetragenen Daten sind, desto exakter wird das Ergebnis der Berechnung.


Berechnungstabelle, Leistungsbedarf

Sollten nicht alle Gebäudedaten verfügbar sein, kann trotzdem eine Schätzung des Leistungsbedarfs erfolgen. Falls das Raumvolumen und die gewünschte Raumtemperatur bekannt ist, kann der Leistungsbedarf im folgenden Diagramm abgelesen werden. Als Basis des Diagramms dienen Leistungsbedarfsberechnungen nach anerkannten Messmethoden. In den Berechnungen wird im Gebäude oder in den Räumen von einem Luftaustausch pro Stunde ausgegangen. Es wird davon ausgegangen, dass die vier Wände Außenwände sind


und dass das Dach über der Decke sich ebenfalls außen befindet. Im Leistungsbedarfsdiagramm A und B beträgt der durchschnittliche k.-Koeffizient 0,25 und 0,4, das entspricht einem korrekt isolierten Gebäude. Im Diagramm C beträgt der durchschnittliche k.-Koeffizient 1,0, das heißt, das Gebäude ist weniger gut isoliert. Die Kurven Δt im Diagramm zeigen die Differenz zwischen der Raumtemperatur und der niedrigsten Außentemperatur.

Berechnungsbeispiel

Eingabedaten

Objekt: Industriegebäude

Gebäudemaße

 $\begin{array}{lll} \text{Längé:} & 40 \text{ m} \\ \text{Breite:} & 20 \text{ m} \\ \text{Höhe:} & 8 \text{ m} \\ \text{Fensterfläche:} & 130 \text{ m}^2 \\ \text{Türen:} & 25 \text{ m}^2 \end{array}$

Baumaterial

Wände: Leichter Betonformstein, 30 cm k. = 0,6Dach: Leichter Betonformstein, 30 cm k. = 0,6Fenster: Doppelfenster, 6 m über dem Boden k. = 3,0Türen: Gedämmte Stahlblech-Falttüren k. = 1,0

Betriebszeit: 12 h/Tag, 5 Tage pro Woche

Lüftung

Natürliche Belüftung, am Tag: 0,4 ch./h
Natürliche Belüftung, in der Nacht: 0,3 ch./h
Interne Wärmeenergie: 5 W/m²

Innentemperatur

Gewünschte Tagestemperatur: +18 °C Gewünschte Nachttemperatur: +15 °C

Umweltdaten

Tiefste Außentemperatur (DOT): -18 °C
Temperatur im Jahresdurchschnitt: 5 °C
Windgeschwindigkeit im Jahresdurchschnitt: 4,0 m/s

Schätzung

Leistungsbedarf

Transmissionswärmeverluste: $P_T = A \times k. \times \Delta t$

	Fläche [m²]	k Koeffizient	∆t [°C]	Leistung [W]	
Außenwand	805	0.6	36	17388	
Dach	800	0.6	36	17280	
Boden	800	0.3	36/2	4320	
Fenster	130	3.0	36	14040	
Türen	25	1.0	36	900	
Wärmedurchgangsverluste, insgesamt: 53 928 W					

Lüftungsverluste: $P_v = V_{Gebäude} \times n \times \Delta t \times 0.33$

	Rauminhalt des Gebäudes	Luftwechsel	Δt	Leistung
	[m³]	[ch./h]	[°C]	[W]
Tag	6400	0.4	36	30413
Nacht	6400	0.3	33	20909

Die größten Lüftungsverluste entstehen am Tage.

Berechneter Leistungsbedarf: 53 928 + 30 413 = 85 kW

Energiebedarf

Wärmedurchgangsenergie: $E_T = P_T/\Delta t \times {^{\circ}Ch}$ $E_T = 53~928/36 \times 97~330 = 146~MWh/Jahr$

Lüftungsenergie: $E_v = P_v/\Delta t \times {}^{\circ}Ch$

Tag: $30413/36 \times 97330 \times 12/24 \times 5/7 = 29$ MWh/Jahr Nacht: $20909/33 \times 97330 \times (1 - 12/24 \times 5/7) = 40$ MWh/Jahr

Interne Wärmeenergie: $E_I = P_I \times A_{Boden} \times 8760$ $E_I = 5 \times 800 \times 8760 \times 12/24 = 12,5$ MWh/Jahr

Gesamter Energiebedarf: $E_r + E_v - E_I = 202,5 \text{ MWh/Jahr}$

Berechnungsbeispiel

Das Industriegebäude in unserem Rechenbeispiel soll mit Wärmestrahlern, z. B. Industrie-Infrarotstrahlern IR oder mit Heizlüftern beheizt werden. Auf dieser Basis wird speziell für diese Heizmethoden eine Computerberechnung des Leistungs und Energiebedarfs erstellt.

Das Rechenprogramm berücksichtigt auch den Temperaturgradienten °C/m (Temperaturanstieg pro Meter Höhe), der gerade bei dieser Gebäudehöhe und Heizmethode Einfluss gewinnt.

Fläche und Höhe		kKoeffizient	
Gebäudegrundfläche	800 m^2	Fenster kKoeffizient	$3,0~\mathrm{W/m^2~^\circ C}$
Dachfläche	800 m^2	Tür kKoeffizient	1,0 W/m² °C
Gebäudehöhe	8 m	Außenwand kKoeffizient	0,6 W/m² °C
Fensterfläche	130 m ²	Dach kKoeffizient	0,6 W/m² °C
Einbauhöhe der Fenster	6 m	Fußboden kKoeffizient	$0,3~\mathrm{W/m^2~^\circ C}$
Türfläche	25 m^2	Zusätzliche Heizquellen	
Außenwandfläche	805 m^2	Interne Wärmeenergie	5 W/m ²
Lüftungswärmeverlust			
Luftwechsel am Tag	0,4 ch./h	Energiekosten	
Luftwechsel in der Nacht	0,3 ch./h	Strompreis (europäischer Durchschnitt)	0,2 €/kWh

	Wärmestrahler	Heizlüfter	Heizlüfter mit Deckenventilatoren	
Temperatur				
Angegebene Innentemperatur	17	18	18	$^{\circ}\mathrm{C}$
Angegebene Außentemperatur	-18	-18	-18	$^{\circ}\mathrm{C}$
Jahresdurchschnittstemperatur	5	5	5	$^{\circ}\mathrm{C}$
Temperaturgradient	0,3	2,5	0,3	°C/m
Nachttemperatur	14	15	15	$^{\circ}\mathrm{C}$
Betriebszeit (TIO)				
Betriebszeit Tagestemperatur	11	12	12	h/Tag
Betriebszeit Nachttemperatur	13	12	12	h/Tag
Betriebstage pro Woche	5	5	5	Tage
ERGEBNISSE				
Leistung				
Transmissionswärmeverluste	54 201	68 684	55 699	W
Lüftungsverluste	+ 30 202	+ 35 693	+ 31 046	W
Wärmeverluste gesamt	84 402	104 377	86 745	W
Interne Wärmeenergie	- 4 000	- 4 000	- 4 000	W
Gesamtleistungsbedarf, netto	80 402	100 377	82 745	W
Leistungsbedarf/m²	101	125	103	W/m²
Leistungsbedarf/m³	13	16	13	W/m³
Energie kWh/Jahr				
Energiebedarf am Tag	88 075	130 340	103 787	kWh/Jahr
Energiebedarf in der Nacht	+ 70 252	+ 88 309	+ 71 975	kWh/Jahr
Gesamtleistungsbedarf, brutto	158 327	218 649	175 761	kWh/Jahr
Interne Wärmeenergie	- 12 514	- 12 514	- 12 514	kWh/Jahr
Gesamtleistungsbedarf, netto	145 813	206 135	163 247	kWh/Jahr
Jährliche Betriebskosten	29 163	41 227	32 649	€/Jahr

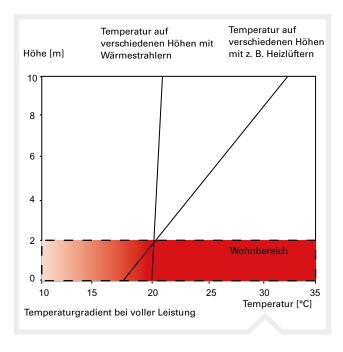
Energieeinsparung

Ein Vergleich des Energiebedarfs gemäß diesen Berechnungen:

Industrie-Infrarotstrahler IR: 146 MWh/Jahr

Heizlüfter: 206 MWh/Jahr

Heizlüfter und Deckenventilator ICF: 163 MWh/Jahr Energieeinsparung mit Wärmestrahlern: 60 MWh/Jahr

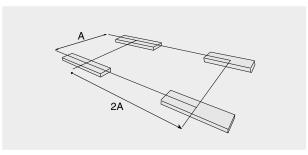

Wärmestrahler verbrauchen ca. 30 % weniger Energie im Vergleich zu Heizlüftern. Falls mit den Heizlüftern Deckenventilatoren eingesetzt werden, beträgt die Differenz 20 %.

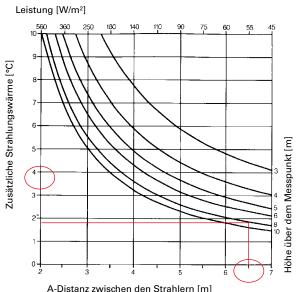
Einsparfaktoren

• Niedriger Temperaturgradient

Wärmestrahler haben einen verhältnismäßig niedrigen Temperaturgradienten (ca. 0,3 °C/m) im Vergleich zu Heizlüftern (ca. 2,5 °C/m). Die Temperaturen sind hierbei vertikal gleichmäßiger verteilt, das bedeutet geringere Wärmeverluste und ein verbessertes Ausnutzen der Heizwärme im Aufenthaltsbereich.

• Beitrag der Strahlungstemperatur


Industrielle Infrarot-Wärmestrahler leisten auch einen Beitrag zur Strahlungstemperatur, und das praktisch "kostenlos". Die Lufttemperatur des Raumes kann daher etwas niedriger gehalten werden, bei gleichbleibender (gefühlter) Betriebstemperatur. Das untere Diagramm zeigt den großen Einfluss des IR4500 auf die Strahlungstemperatur. Die Strahler sind an der Decke in einer Höhe von 8 Metern über dem Boden montiert. Die Messungen erfolgten 1,5 Meter über dem Boden (Höhe über dem Messpunkt = 6,5 m).


Das Diagramm für den Beitrag zur Strahlungstemperatur zeigt:

Δt_{rad} = 2 °C, A-Distanz 6,5 Meter zwischen den Strahlern

$$\Delta t = t_{Raum} + \Delta t_{rad}/2 => t_{Raum} = t_{op} - \Delta t_{rad}/2$$

In unserem Beispiel: $t_{Raum} = 18 - 2/2 = 17$ °C

Zusätzliche Strahlungswärme IR 4500

• Schnelle Erwärmung

Die Heizung mit Wärmestrahlern erfolgt schneller als mit Luftheizungen. Falls bei Nacht eine geringere Temperatur gewünscht wird als im gezeigten Beispiel, kann die Nachttemperatur verlängert werden.

Empfehlung und Einbauposition

Der Leistungsbedarf dieses Industriegebäudes beträgt bei einer Heizung mit Infrarot-Wärmestrahlern IR etwas über 80 kW. Empfehlung: Es werden 18 Industrie-Infrarotstrahler IR mit je 4,5 kW empfohlen.

Tabellen zur Dimensionierung

Elektrische Grundformeln

Stromstärke		
Gleichstrom und 1-phasiger Wechselstrom bei cos⊕=1	3-Phasen- Wechselstrom Y-Schaltung	3-Phasen- Wechselstrom ∆-Schaltung
I=U/R=P/U	=	I=I, √3

Spannung Gleichstrom und 1-phasiger Wechselstrom bei cosφ=1	3-Phasen- Wechselstrom Y-Schaltung	3-Phasen- Wechselstrom ∆-Schaltung
U=RI	U=U _f √3	U _r =U

Leistung		
Gleichstrom	3-Phasen-	3-Phasen-
und 1-phasiger	Wechselstrom	Wechselstrom
Wechselstrom bei	Y-Schaltung	∆-Schaltung
cosφ=1		
P=UI	P= √3UIcosφ	P= √3 UI cosφ

U = Betriebsspannung in Volt: bei Gleichstrom und Einphasenwechselstrom zwischen den beiden Leitern, bei 3-Phasen-Wechselstrom zwischen zwei Phasen (nicht zwischen Phase und Null).

U_c= Spannung zwischen Phase und Null in einem Kabel mit 3 Phasen

 $\sqrt{3} \cong 1.73$

I = Stromstärke in Ampere

I_i= Stromstärke in Ampere in der Phasenleitung

R = Widerstand in Ohm

P = Leistung in Watt Symbole für Modelltypen

= Standard (kein Symbol)

= tropfwassergeschützt, IPX1

= spritzwassergeschützt, IPX4 ▲ = strahlwassergeschützt, IPX5

Schutzarten für Elektromaterial

IP, erste Stelle	Schutz vor festen Objekten
0	Kein Schutz
1	Schutz vor festen Objekten ≥ 50 mm
2	Schutz vor festen Objekten ≥ 12,5 mm
3	Schutz vor festen Objekten ≥ 2,5 mm
4	Schutz vor festen Objekten ≥ 1,0 mm
5	Schutz vor Staub
6	Staubdicht

IP, zweite Stelle Schutz vor Wasser

0	Kein Schutz
1	Schutz vor senkrecht auftreffendem Tropfwasser
2	Schutz vor Tropfwasser max. 15°
3	Schutz vor Spritzwasser
4	Schutz vor Sprühwasser
5	Schutz vor Strahlwasser
6	Schutz vor schwerer See
7	Schutz gegen kurzfristiges Eintauchen in Wasser
8	Schutz vor Auswirkungen von langfristigem
	Eintauchen in Wasser

Dimensionierungstabelle für Kabel und Drähte

Installations oder in Kabe	•	n Verbindungsleitungen		
Querschnitt [mm²]	Sicherung [A]	Querschnitt [mm²]	Dauerstrom [A]	Sicherung [A]
1.5	10	0.75	6	10
2.5	16	1	10	10
4	20			
6	25	1.5	16	16
10	35	2.5	25	20
16	63	4	32	25
25	80	6	40	35
35	100	10	63	63
50	125			
70	160			
95	200			
120	250			
150	250			
185	315			
240	315	•	•	•
300	400			
400	500			

Dimensionierungstabelle

Stromstärke bei unterschiedlichen Leistungen und Spannungen

Leistung		Schaltleitungen				
[kW]	127/1	230/1	400/1	230/3	400/3	500/3
1.0	7.85	4.34	2.50	2.51	1.46	1.16
1.1	8.65	4.78	2.75	2.76	1.59	1.27
1.2	9.45	5.22	3.00	3.02	1.73	1.39
1.3	10.2	5.65	3.25	3.27	1.88	1.50
1.4	11.0	6.09	3.50	3.52	2.02	1.62
1.5	11.8	6.52	3.75	3.77	2.17	1.73
1.6	12.6	6.96	4.00	4.02	2.31	1.85
1.7	13.4	7.39	4.25	4.27	2.46	1.96
1.7	14.2	7.83	4.50	4.52	2.60	2.08
1.9	15.0	8.26	4.75	4.78	2.75	2.20
2.0	15.8	8.70	5.00	5.03	2.89	2.31
2.2	17.3	9.67	5.50	5.53	3.18	2.54
2.3	18.1	10.0	5.75	5.78	3.32	2.66
2.4	18.9	10.4	6.00	6.03	3.47	2.77
2.6	20.5	11.3	6.50	6.53	3.76	3.01
2.8	22.0	12.2	7.00	7.03	4.05	3.24
3.0	23.6	13.0	7.50	7.54	4.34	3.47
3.2	25.2	13.9	8.00	8.04	4.62	3.70
3.4	26.8	14.8	8.50	8.54	4.91	3.93
3.6	28.4	15.7	9.00	9.05	5.20	4.15
3.8	29.9	16.5	9.50	9.55	5.49	4.39
4.0	31.15	17.4	10.0	10.05	5.78	4.62
4.5	35.4	19.6	11.25	11.31	6.50	5.20
5.0	39.4	21.7	12.50	12.57	7.23	5.78
5.5	43.3	23.9	13.75	13.82	7.95	6.36
6.0	47.3	26.1	15.0	15.1	8.67	6.94
6.5	51.2	28.3	16.25	16.3	9.39	7.51
7.0	55.0	30.4	17.50	17.6	10.1	8.09
7.5	59.0	32.6	18.75	18.8	10.8	8.67
8.0	63.0	34.8	20.0	20.1	11.6	9.25
8.5	67.0	37.0	21.25	21.4	12.3	9.83
9.0	71.0	39.1	22.5	22.6	13.0	10.4
9.5	75.0	41.3	23.75	23.9	13.7	11.0
10.0	78.5	43.5	25.0	25.1	14.5	11.6

Für Leistungen zwischen 0,1 und 1 kW wird der abgelesene Ampere-Wert mit 0,1 multipliziert.

Für Leistungen zwischen 10 und 100 kW wird der abgelesene Ampere-Wert mit 10 multipliziert.

Klimawerte

	Durchschn. Tages- temperatur	Extrem- temp. im Dez.	Durchschn. Wind- geschwindig- keit
Ort	[°C]	[°C]	[m/s]
Skandinavien			
Tromsö	2.9	-14.9	3.0
Karesoando	-1.5	-30.2	1.5
Sodankyle	-0.4	-43.1	3.0
Trondheim	4.9	-20.2	3.2
Vaasa	3.5	-30.2	3.8
Bergen	7.8	-8.4	3.2
Oslo	5.9	-20.2	2.2
Stockholm	6.6	-16.3	3.8
Göteborg	7.6	-15.8	4.0
Kopenhagen	8.5	-11.4	2.3
Großbritannien, Fran	nkreich, Belgier	, Niederland	le, Luxemburg
London	10.4	(-12)	-
Eelde	8.7	-14.6	5.3
De Bilt	9.3	-20.8	3.3
Ostende	9.9	-13.5	6.5
Brüssel	9.9	-16.0	3.8
Lille	9.7	-14.0	4.5
Luxemburg-Stadt	8.8	-15.2	
Le Havre	10.6	-7.8	_
Paris	10.9	-13.2	3.9
Straßburg	9.7	-21.0	2.2
Brest	10.8	-5.0	5.0
Tours	11.2	-18.0	3.7
Nantes	11.7	-10.8	3.6
Lyon	11.4	-24.6	3.0
Bordeaux	12.3	-13.4	3.1
Toulouse	12.5	-10.5	3.6
Marseille	14.2	-12.8	4.4
Ajaccio, Korsika	14.7	-3.6	2.6
Iberische Halbinsel	1-1.7	0.0	2.0
Santander	13.9	-0.2	3.6
Barcelona	16.4	-2.5	2.2
Porto	14.4	-3.7	5.1
Madrid	13.9	-6.5	2.7
Palma de Mallorca	16.8	-1.5	2.8
Lissabon	16.6	0.0	4.1
Sevilla	18.8	-2.8	1.7
Malaga	18.5	2.0	2.1
Polen, Tschechische			
Gdingen	7.9	-14.8	3.6
Warschau	8.1	-14.6	4.1
Krakau	8.6	-17.1	2.7
		-20.4	-
Prag Ostrava	7.9		
	8.1	-27.9	
Bratislava	9.6	-22.8	3.4
Budapest	11.2	-19.1	2.3
Pecs	11.5	-	3.3

Ort	Durchschn. Tages- temperatur	Extrem temp. im Dez.	Durchschn. Wind- geschwindigkeit
	[°C]	[°C]	[m/s]
Mitteleuropa List auf Sylt	8.4	-8.0	6,7
Greifswald	8.3	-17.4	5,3
Hamburg	8.4	-16.4	4,2
Dresden-Wahnsdorf	8.6	-20.3	4,9
Aschen	9.7	-16.5	3,0
Karlsruhe	10.1	-21.5	2,3
Wien	9.8	-15.3	3,0
Salzburg	8.1	-27.7	2,0
Garmisch-	0.1	-21.1	2,0
Partenkirchen	6.3	-22.7	1,3
Zürich	8.5	-19.3	2,8
Innsbruck	8.6	-24.8	1,3
Graz	8.3	-19.0	1,4
	10.3	- 19.0	
genf Italien	10.5		
Mailand	3.8	-7.0	
Genua	9.2	-2.8	
Florenz	14.4	-8.0	-
Rom	15.6	-5.0 -1.6	-
Neapel Messina	17.9	-0.2	
	17.9	-0.2	-
Südost-Europa	11.6	-26.3	
Zagreb	11.8		
Belgrad		-19.3	-
Bukarest	11.1	-19.9	2,0
Sarajevo	9.8	-22.4	1,4
Sofia	10.4	-20.3	2,0
Skopje	12.4	-21.8	1.5
Tirana Thessaloniki	16.0	-8.0	1,5
Athen	16.1	-	- 2.0
Osteuropa und Russland		-	2,0
<u>.</u>			4.2
Murmansk (Region)	-0.6	-	4,2
Archangelsk (Region)	-1.0	-	-
Moskau	4.9	-	-
St. Petersburg (Region)	4.4	-	3,6
Baltische Staaten	6.2	-	5,0
Weißrussland	6.3	-	3,4
Kiev	7.6	-	-
Novosibirsk	1.0	-	-

Wärmedämmung, k.-Wert

k. = Wärmedurchgangskoeffizient [W/m² °C]

Der k.-Koeffizient zeigt die Wärmedämmkapazität eines Gebäudeteils. Mit der folgenden Gleichung kann der k.-Koeffizient berechnet werden: 1/k. = R_{si} + R + d_1/λ_1 + d_2/λ_2 +.......+ d_n/λ_n + R_{se} R = Wärmewiderstand [m² °C/W]

R-Werte zeigen die Wärmedämmkapazität eines Produktes oder eines Gebäudeteils. R_{si} = Wärmeleitwiderstand von der Innenluft zur Wandoberfläche [m² °C/W] R_{se} = Wärmeleitwiderstand von der Außenluft zur Wandoberfläche [m² °C/W] d_1, d_2,d_n = Materialstärke [m] $\lambda_1, \lambda_2,\lambda_n$ = Wärmeleitfähigkeit [W/m°C]

Material

Material

Material	U-Wert in [W/m ² °K]
Wände	
Neue Gebäudekonstruktion	
Holzkonstruktion mit 15 cm Isolierung und Gipskarton	0,27
Holzkonstruktion mit 20 cm Isolierung und Gipskarton	0,25
Holzkonstruktion mit 25 cm Isolierung und Gipskarton	0,22
Ziegelsteinkonstruktion mit 15 cm Isolierung und	0.07
Gipskarton	0,27
Ziegelsteinkonstruktion mit 20 cm Isolierung und	0.24
Gipskarton	0,24
Leichtbeton mit 15 cm Isolierung	0,25
Leichtbeton mit 20 cm Isolierung	0,2
Plattenkonstruktion mit 5 cm Isolierung	0,8
Plattenkonstruktion mit 10 cm Isolierung	0,4
Plattenkonstruktion mit 15 cm Isolierung	0,3
Neubau für Niedrigenergiehaus	0,18
Lager	0,3
Einfaches PVC (900 g)	5,0
Isolierte Halle (Thermohalle)	0,6
Ältere Gebäude	
Einfacher Mauerstein, 12 cm	1,8
1,5 Steine, 18 cm	1,1
Leichter Betonformstein, 20 cm	0,8
Leichter Betonformstein, 30 cm	0,6
Beton, 15 cm	2,8
Beton mit 5 cm Dämmung	0,8
Beton mit 10 cm Dämmung	0,4
Fertigwand mit 5 cm Dämmung	0,8
Fertigwand mit 10 cm Dämmung	0,4
Fertigwand mit 15 cm Dämmung	0,3
Neubau	0,3

Dach	
Neue Gebäudekonstruktion	
Wellblechdach, mit 20 cm Isolierung	0,24
Ziegeldach, mit 20 cm Isolierung	0,23
Ältere Gebäude	
Betonträgerkonstruktion, 15 cm	2,8
Betonträgerkonstruktion mit 5 cm Dämmung	0,8
Betonträgerkonstruktion mit 10 cm Dämmung	0,4
Leichter Beton, 20 cm	0,8
Leichter Beton, 30 cm	0,6
Wellblechdach, nicht isoliert	4,0
Wellblechdach, mit 5 cm Dämmung	0,8
Wellblechdach, mit 10 cm Dämmung	0,6
Wellblechdach, mit 25 cm Dämmung	0,2

Material	U-Wert in [W/m² °K]
Fenster	
Neue Gebäudekonstruktion	
1+1 Fensterscheiben (1 äußere Scheibe und 1	2.5
isolierte Scheibe)	2,5
Zweifachfenster (zwei mal Isolierglas)	2,7
2+1 Fensterscheiben (1 äußere Scheibe und 2	4.0
isolierte Scheiben)	1,0
Dreifachfenster (drei mal Isolierglas)	1,2
Energieklasse A	0,9
Energieklasse B	1,0
Energieklasse C	1,1
Energieklasse D	1,2
Energieklasse E	1,3
Energieklasse F	1,4
Energieklasse G	1,5
Ältere Gebäude	
EinfEinfachfenster	5,0
Doppelfenster	3,0
Dreifachfenster	2,0
Dreifachfenster mit Isolierglas	1,8
Türen	
Schiebetüren mit Vollverkleidung	0,8
Schiebetür mit Fensterscheibe	1,3
Falttüren mit Fensterscheiben	2,2
Falttüren voll verglast	3,4
Einfache Eingangstür ohne Glas	1,0
Einfache Eingangstür mit Glas	3,4
Doppelte Eingangstür ohne Glas	0,7
Doppelte Eingangstür mit Glas	1,7

Boden	
Neue Gebäudekonstruktion	
Neuer Boden mit 10 cm Isolierung	0,2
Neuer Boden mit 15 cm Isolierung	0,16
Neuer Boden mit 20 cm Isolierung	0,13
Ältere Gebäude	
< 300 m ²	0,4
> 300 m ²	0,3

Temperaturgradienten

Konvektor-Heizung	2 - 2,5 °C/m
Warmluft-Heizung - Heizlüfter	2 - 2,5 °C/m
Radiatoren und Warmluftheizung	1,7 °C/m
Radiator-Heizung	1,2 °C/m
Wärmestrahler	0,2 - 0.4 °C/m
Fußbodenheizung	~0,1 °C/m

Die Werte gelten bei voller Leistung

Wärmewiderstand R

Material	R Wärmewiderstand [m² °C/W]	
Interner + externer Leitungswiderstand Rsi	0.17	
+ Rse	0.17	
Kellerwand, unterirdisch	1.0	
1-2 Meter	1.0	
Unter dem Fußboden am Boden	0.7	
Äußerer Grenzbereich		
Unter dem Fußboden am Boden	2.0	
Innerer Grenzbereich		

Interne Wärmeenergie

Aktivitäten	ctivitäten W/m² Bodenfläche	
Laden	15	
Cafeteria	15	
Büro	0-20	100
Sport-Center	10	
Bäckerei	30	
Stahlwerk	50-70	
KFZ-Werkstatt	15	
Handwerksbetrieb	20	
Groß-Werkstatt	50	
Blechschweißen	25	

Infiltration

Gebäude-Typ	[Luftwechsel / h]
Neue Gebäude	
< 1000 m ²	0,3
> 1000 m ²	0,1
Ältere Gebäude	
< 1000 m ²	0,4
> 1000 m ²	0,2

Energieäquivalent

Menge und Substanz	Energiemenge [MWh]
1 m³ Öl	8.000
1 Nm³ Flüssig-Propangas	0.022
1 Nm³ Erdgas	0.009
1 Nm³ Stadtgas	0.004
1 kg Flüssig-Propangas	0.087
1 kg Erdgas	0.007
1 kg Stadtgas	0.003

Belüftung

Mit der folgenden Formel können die Volumenströme zur Belüftung berechnet werden:

$$Q = q \times A_{\text{Boden}} \times 3.6 \quad oder \quad Q = n \times V_{\text{Gebäude}}.$$

wobei q = Volumenstrom [l/sm²] n = Anzahl der Luftwechsel pro Stunde A_{n a} = Fußbodenfläche des Gebäudes [r

 ${
m A_{Boden}}$ =Fußbodenfläche des Gebäudes [m²] ${
m V_{Gebäude}}$ =Rauminhalt des Gebäudes [m³]

Wärmeleitfähigkeit

Material	λ-Werte [W/m°C]
Naturstein	2.4-3.6
Kalksandstein	1.0
Beton	1.7
Leichter Klinkerstein, Beton	0.6
Ziegel und Beton-Hohlblocksteine	0.6
Zementmörtel	1.0
Holz, Spanplatten	0.14
Gipskartonplatten	0.22
Sperrholz	0.13
Faserstoffplatten	0.08
Steinwolle	0.045
Zellkunststoff	0.04

Die unten angegebenen Volumenströme sind nur Empfehlungen.

Gebäude	l/s m²	I/s Person	Luftaustausch/h
Laden	2.1	7	4-5
Cafeteria	5	7	6.0
Öffentliche Gebäude	0.35	+7	3.0
Büro	0.35	+7	1-2
Schule	0.35	+7	4-5
Sport-Center	2.1	7	2.0
Bäckerei	6		6.0
Stahlwerk	40.0		10-15
KFZ-Werkstatt	30		3.0
Handwerksbetrieb	0.35	+7	5.0
Blechschweißen	5.0		5.0
Veranstaltungshalle/		00	0.0
Raucher		20	8.0
Veranstaltungshalle/		7	6.0
Nichtraucher	,	7 7	6.0
Mindestanforderung	0.35		ca 0,5

Energieeffiziente Produkte für ein angenehmes Raumklima

Türluftschleier

Es ist wirtschaftlich außerordentlich sinnvoll, eine effiziente und unsichtbare Tür zu schaffen, die die Wärme innen hält. Türluftschleier sind noch effektiver, wenn sie in Gebäuden mit Klimaanlage oder in kalten Lagerräumen eingesetzt werden.

Die Thermozone-Technologie mit ihrer genau angepassten Luftgeschwindigkeit schützt gleichmäßig über die gesamte Öffnung hinweg. Frico-Türluftschleier bieten die effizienteste Trennung bei geringstmöglichem Energieverbrauch - ganz gleich, ob Sie die Wärme oder die Kälte im Raum halten möchten.

Wärmestrahler

Wärmestrahler von Frico ahmen die Sonne nach, die angenehmste und wirkungsvollste Wärmequelle, die zur Verfügung steht. Die Raumtemperatur kann gesenkt werden und die Anwesenden fühlen sieh dennoch wohl, da die Wärme nur abgegeben wird, wenn sie auf eine Oberfläche trifft. Dadurch sind Wärmestrahler nicht nur zur Gesamtheizung geeignet, sondern auch für punktuelle und zonale Heizung, um z. B. kalte Zugluft von Fenstern zu verhindern.

Wärmestrahler sind einfach zu installieren und erfordern nur eine geringe Wartung. Sie heizen sofort nach dem Einschalten und führen nicht zu Luftbewegungen.

Heizlüfter

Wir sind stolz auf die weltweite Anerkennung der Heizlüfter von Frico. Sie sind zuverlässig und verfügen über eine lange Lebensdauer. Unser Sortiment deckt alle Anforderungen ab. Die Investitionskosten sind im Vergleich zu anderen Heizsystemen niedrig.

Ein großer Vorteil der Heizlüfter ist die Möglichkeit der Kombination von Heizung und Lüftung. Frico-Heizlüfter sind kompakt, leise und leicht. Sie sind sowohl in elektrisch beheizter als auch in wasserbeheizter Ausführung erhältlich.

Konvektoren

Konvektion ist der Fachbegriff für die rotierende Luftbewegung, bei der die Luft durch eine Wärmequelle bewegt wird. Die Luft wird erwärmt, steigt auf, kühlt ab und sinkt wieder zu Boden, um erneut erwärmt zu werden. So wird durch die gute Wärmeverteilung ein angenehmer Komfort geschaffen und die warme, aufsteigende Luftströmung wirkt kalter Zugluft entgegen, die von großen Glasflächen ausgeht.

Deckenventilatoren

Deckenventilatoren führen die überhitzte Deckenluft bei Räumen mit hohen Decken in den Bodenbereich zurück, sodass die vorhandene Wärme maximal genutzt wird. Die Deckenventilatoren können auch rückwärts betrieben werden, so dass Kaltluft im Raum zirkulieren kann und sich diese kühler anfühlt.

Thermostate und Regler

Der Schlüssel für effizientes, komfortables Heizen liegt darin, das Heizgerät mit einem guten Regler zu kombinieren. Frico bietet eine große Auswahl an Thermostaten und Reglern an. Weitere Informationen finden Sie bei den jeweiligen Produkten bzw. im Frico Katalog.

Ballu GmbH 7343 Neutal, Werner von Siemensstraße 1 Tel: +43 (0)2618 20 722 www.ballu.at office@ballu.at

Box 102, 433 22 Partille Schweden + 46 31 336 86 00 mailbox@frico.se • www.frico.se